ORACLE

e L/Nalgy ORACLE

REAL-WORLD PERFORMANCE

3/19/2015 Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

Why is My SQL
Slow ?

@ Nall ORACLE
REAL-WORLD PERFORMANCE Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

Data Warehouse Death Spiral

* HW CPU Sizing 10X
— Sized like an OLTP System
* |/O Sizing 10X
— Sized by Space requirements

— Cannot use Parallel Query

* Using the the incorrect Query Optimization Techniques 10X

— Over Indexed Database
— Data Loads and ETL running to Slow

» System Over loaded to Make the CPU look Busy

— 100s of Concurrent Queries taking Hours to Execute

v ORACLE
DRACI‘-E Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |
REAL-WORLD PERFORMANCE

Extreme Data Warehouse Workloads

Defined by:

Analytics / Bl queries
Process large numbers of rows
Append-only

Resource intensive
Parallel Processing Required

Recruit all Available HW for a single task

@ cYNaR—gl ORACLE
REAL-WORLD PERFORMANCE Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

Data Loading
Anatomy of an External Table

External Table

Definition

(
column definition list ... Reference the Mount
organization external)
(type oracle loader Uncompress the data using a
c secure wrapper
preprocessor exec_file dir:’zcat.sh’
characterset ‘ZHS16GBK’
AT RO B TR TORG Taedh The Characterset must match the
logfile ERROR DUMP:’FAST LOAD.log’ Characterset of the Files
file column mapping list ...
) Note Compressed Files
location
reject limit 1000
parallel 4

create table FAST_ LOAD

) Point
default directory SPEEDY FILESYSTEM

(

(file_1.gz, file 2.gz, file 3.gz, file 4.9z)

/

Parallel should match or be
less than the number of

Files

e C)Nalgl ORACLE

REAL-WORLD PERFORMANCE Copyright © 2014, Oracle and/or its affiliates. All rights reserved. | © 2009 Oracle Corporation — Proprietary and Confidential

Validation Example
Set based processing vs. row by row

1:55:12 1:46:06
1:40:48
1:26:24
1:12:00
o 0:57:36
S 0:43:12
0:28:48
0:14:24 ~ 0:07:03 7 g 2.5
0:00:00 ~ TE——
Store Product

Validation Validation

ORACLE ORALLE
REAL—VPO%?I?B SESPO%OIWRW&? — Proprietary and Confidential Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

B Row Based

B Set Based

1 Terabyte Loaded and Ready To Go In 20 Minutes

0:22

ORACLE

ORACLE
REAL—VPO@I(_)B QEQPOWRW&? — Proprietary and Confidential

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

B Create Tablespaces and run DDL

W Initial 1TB Load

B Gather Statistics

M Daily Incremental Load

= Referential Integrity Check

M Transform Data

B Exchange and Incremental Statistics

B Query from Hell

Requirements for Interactive Performance for DW Query
Business Goals

* Analytics at the Speed of Thought

* Predictable Response Times

* No runaway queries
* Most frequent implementation is Star/Snowflake or Dimensional Schema

@ CYNaR—gl ORACLE
REAL-WORLD PERFORMANCE Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

Why a Dimensional Schema?

* Dimensional schemas are schemas in
which data is organized into & =
facts, dimensions

* “Facts” represent events, such as
sales, logins, orders, etc.

Fact

N

* Dimensions contain reference information N
about facts

* Fact tables are denormalized tables that <

store data for multiple dimensions

* Provides ability to retrieve all “interesting”
detailed information from a single table
with only joins to smaller dimension
tables

@ CYNaR—gl ORACLE
REAL-WORLD PERFORMANCE Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

What is a Dimensional Schema?

* Dimensional schemas are either star
schemas or snowflake schemas

* Schemas consist of fact tables and
dimension tables m—

LO_ORDERKEY NUMBER
LO_LINENUMBER NUMBER

* The Fact table stores measures;
i.e., order quantity, net price, etc.

LO_SHIPPRIORITY VARCHAR2 (1 BYTE)

* Dimension tables store attributes to
describe facts; i.e., month, customer
name, etc.

LO_SHIPMODE 'VARCHAR2 (10 BYTE)

4

* Tables are joined using keys

* Dimensional queries are designed to
run on dimensional schemas

e CVNal g ORACLE
REAL-WORLD PERFORMANCE Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

Shape and Structure of a Typical Dimensional Query

SELECT d_sellingseason, p_category, s_region,
SUM (lo_extendedprice)

FROM lineorder
JOIN customer ON lo_custkey = c_custkey
JOIN date_dim ON lo_orderdate = d datekey
JOIN part ON lo_partkey = p partkey
JOIN supplier ON lo_suppkey = s_suppkey

WHERE d year IN (1993, 1994, 1995)

AND p_container in ('JUMBO PACK')
GROUP BY d sellingseason, p category, s_region
ORDER BY d sellingseason, p category, s_region

* Choose your fact table

* Complete the star by defining relationships with joins to dimension tables
* Choose filter criteria based upon dimension attributes

* Choose measures for aggregation

» Choose segmentation/roll up columns

* Choose grouping requirements

* Choose ordering requirements

@ CYNaR—gl ORACLE
REAL-WORLD PERFORMANCE Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

Star Query Race Demo

@ CYNaR—gl ORACLE
REAL-WORLD PERFORMANCE Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

The Goal

v * Access the fact table once
RIS
\\ * Filter out all the rows you’re NOT
NN

interested in as early as possible

* i.e. maximize row rejection

@ CYNaR—gl ORACLE
REAL-WORLD PERFORMANCE Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

Star Query Execution Plans

@ CYNaR—gl ORACLE
REAL-WORLD PERFORMANCE Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

Nested Loops with B*Tree Indexes
1 Build Filters

Operation Object Name Predicate information
SELECT STATEMENT
SORT GROUP BY

M
NESTED LOOPS
NESTED LOOPS
NESTED LOOPS
NESTED LOOPS date_dim [
TABLE ACCCESS BY LOCAL INDEX ROWID PART P_CONTAINER ="JUMBO PACK' B
INDEX RANGE_SCAN PART CONTAINER N

R S A\

PARTITION RANGE ALL LO_ORDERDATE = D_DATEKEY
TABLE ACCESS BY LOCAL INDEX ROWID LINEORDER
INDEX RANGE_SCAN LO_PART_N
TABLE ACCESS BY INDEX ROWID DATE_DIM D_YEAR IN (1993, 1994, 1995)
LO_ORDERDATE = D_DATEKEY
INDEX UNIQUE SCAN DATE_DIM_PK — — ISELECT d_sellingseason, p_category, s_region,
TABLE ACCESS BY INDEX ROWID SUPPLIER sum(lo_extendedprice)
INDEX UNIQUE SCAN SUPPLIER_PK LO_SUPPKEY =S_SUPPKEY FROM lineorder
JOIN customer ON lo_custkey = c_custkey
JOIN date_dim ON lo_orderdate = d_datekey
JOIN part ON lo_partkey = p_partkey
JOIN supplier ON lo_suppkey = s_suppkey
WHERE d year IN (1993, 1994, 1995)
D P container in (' JUMBO PACK'))
GROUP BY d_sellingseason, p_category, s_region
ORDER BY d_sellingseason, p_category, s_region
C)r? CI_E Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

REAL-WORLD PERFORMANCE

Nested Loops with B*Tree Indexes
2. Extract Rows from the Fact table

customer

Operation Object Name Predicate information lineorder
SELECT STATEMENT
SORT GROUP BY
NESTED LOOPS
NESTED LOOPS
NESTED LOOPS i
NESTED LOOPS] SEIEr
TABLE ACCCESS BY LOCAL INDEX ROWID PART P_CONTAINER ='JUMBO PACK'
INDEX RANGE_SCAN PART_CONTAINER N
[PARTITION RANGE ALL LO_ORDERDATE = D_DATEKEY)
TABLE ACCESS BY LOCAL INDEX ROWID LINEORDER
. INDEX RANGE SCAN LO PART N)
TABLE ACCESS BY INDEX ROWID DATE_DIM D_YEAR IN (1993, 1994, 1995)
LO_ORDERDATE = D_DATEKEY
INDEX UNIQUE SCAN DATE_DIM_PK — — ISELECT d sellingseason, p category, s region,
TABLE ACCESS BY INDEX ROWID SUPPLIER o ice) -
INDEX UNIQUE SCAN SUPPLIER_PK LO_SUPPKEY =S_SUPPKEY |FROM " lineorder |
TOIN cust ON lo_custkey = c_custkey
JOIN date_dim ON lo_orderdate = d_datekey
JOIN part ON lo_partkey = p_partkey
JOIN supplier ON lo_suppkey = s_suppkey
WHERE d year IN (1993, 1994, 1995)
AND p_container in ('JUMBO PACK')
GROUP BY d_sellingseason, p_category, s_region
ORDER BY d_sellingseason, p_category, s_region
C)I? CI_E Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

REAL-WORLD PERFORMANCE

Nested Loops with B*Tree Indexes

3. Join to Dimensions to Project Additional Columns

Operation Object Name

SELECT STATEMENT

Predicate information

SORT GROUP BY

(NESTED LOOPS

NESTED LOOPS

NESTED LOOPS

__NESTED LOOPS

TABLE ACCCESS BY LOCAL INDEX ROWID PART

P_CONTAINER ='JUMBO PACK'

INDEX RANGE_SCAN

PART_CONTAINER_N

PARTITION RANGE ALL

LO_ORDERDATE = D_DATEKEY

ﬂ

TABLE ACCESS BY LOCAL INDEX ROWID LINEORDER
INDEX RANGE_SCAN LO_PART_N
("~ TABLE ACCESS BY INDEX ROWID DATE_DIM D YEARINTTO9S, T4, 1995
INDEX UNIQUE SCAN DATE_DIM_PK LO_ORDERDATE = D_DATEKEY
TABLE ACCESS BY INDEX ROWID SUPPLIER
__INDEX UNIQUE SCAN SUPPLIER PK LO_SUPPKEY =S_SUPPKEY J

ORACLE

REAL-WORLD PERFORMANCE

ORACLE

ISELECT

GROUP BY
ORDER BY

d_sellingseason, p_category, s_region,
sum(lo_extendedprice)

FR lineorder
JOIN custonax e —aweiivesy]
JOIN date_dim ON lo _orderdate = d datekey
RALT =

JOIN supplier ON lo suppkey = s suppkey
WH. |_year (1993, 1994, 1995)

AND p_container in ('JUMBO PACK')
d_sellingseason, p_category, s_region
d_sellingseason, p_category, s_region

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

Nested Loops with B*Tree Indexes
4. Aggregate/Sort Row and Return Results

Operatio Obje ame Predicate informatio
SELECT STATEMENT
SORT GROUP BY |
NESTED LOOPS
NESTED LOOPS
NESTED LOOPS
NESTED LOOPS
TABLE ACCCESS BY LOCAL INDEX ROWID PART P_CONTAINER ='JUMBO PACK'
INDEX RANGE_SCAN PART_CONTAINER_N
PARTITION RANGE ALL LO_ORDERDATE = D_DATEKEY
TABLE ACCESS BY LOCAL INDEX ROWID LINEORDER
INDEX RANGE_SCAN LO_PART_N
TABLE ACCESS BY INDEX ROWID DATE_DIM D_YEAR IN (1993, 1994, 1995)
LO_ORDERDATE = D_DATEKEY
INDEX UNIQUE SCAN DATE_DIM_PK — — ISELECT d sellingseason, p category, s region],
TABLE ACCESS BY INDEX ROWID SUPPLIER 7 } =
INDEX UNIQUE SCAN SUPPLIER_PK LO_SUPPKEY =S_SUPPKEY FROM lineorder
JOIN customer ON lo_custkey = c_custkey
JOIN date_dim ON lo_orderdate = d_datekey
JOIN part ON lo_partkey = p_partkey
JOIN supplier ON lo_suppkey = s_suppkey
WHERE d year IN (1993, 1994, 1995)
AND p container in ('JUMBO PACK')
[SROUP BY d sellingseason, p category, s region
DRDER BY d sellingseason, p category, s region
C)I? CI_E Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

REAL-WORLD PERFORMANCE

Nested Loops with B*Tree Indexes
Things to Think About

General Time & Wait Statistics 10 Statistics
SQL Text SELECT /*+ MONITOR LEADING(part lineorder) index(L] Duration 3.4h Buffer Gets | 30
Execution Started Thu Jan 22, 2015 9:01:58 PM Database Time 3.5h uests 7,032K
Last Refresh Time Fri Jan 23, 2015 12:25:38 AM PL/SQL & Java Os
Execution ID 16777216 Activity % || 100
User MHALLAS_BTREE
Fetch Calls 43 h
Ran 3.4 hours

| Details

Plan Statistics | |~ Activity | [5] Metrics

Plan Hash Value 3418806462

Operation Name |Line... | Estimated R... | Cost. | Timeline(12220s) | Executi... | Actual Rows | Memory (... | Temp (Max) |O | 10 Requests | 10 By... | Activity . .
[l SELECT STATEMENT 0 (— 1 625 was In accessi ng fa Ct
Bl SORT GROUP BY 1 313 33 ee—— 1 625 58KB |.03 bl b
Bl NESTED LOOPS ,413K | .02 ta € rows to €
Bl NESTED LOOPS 413K reJ ected Iate r
Bl NESTED LOOPS ,413K

El NESTED LOOPS 3.4 hou rs - nOt gOOd ,503K

- TABLE ACCESS BY INDEX ROWID BATCHED ~ PART 30K | 3,787 isovB | .07
INDEX RANGE SCAN P_CONTAINER_N1 30K 192 1736kB | .01

El- PARTITION RANGE ALL ,503K | .04

[l TABLE ACCESS BY LOCAL INDEX ROWID ... ~ LINEORDER 7,503K i 6,414K e 49GB 9
INDEX RANGE SCAN LO_PART_N 10 375 16(R 408K 7,503K | 612K | 5GB M3
B TABLE ACCESS BY INDEX ROWID DATE_DIM 11 1 | = 7,503 3,413K 126 1208KB | .1
INDEX UNIQUE SCAN DATE_DIM_PK 12 1 = 7 503K 7,503K |16 1128kB | .07
El TABLE ACCESS BY INDEX ROWID SUPPLIER 13 1 | = 3413 3,413K 11,914 |15MB | .13
INDEX UNIQUE SCAN SUPPLIER_PK 14 1 ———— s 3,413K | 417 13MB |12

ORACLE ORACLE

REAL-WORLD PERFORMANCE

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

B*Tree Index with Nested Loops Joins Summary

Primary Fact Table

Technique Requirements Pros Cons
q Access Method q
B*Tree Indexes * B*Tree index access * Indexeson fact table Decent performance if number Algorithmically weak; can’t
with NL Joins * Nested Loops joins of rows is very small and all get fact table rows fast
data accessed is satisfied from enough
memory

@ CYNaR—gl ORACLE
REAL-WORLD PERFORMANCE Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

Star Transformation with Bit Mapped Indexes

SELECT d_sellingseason, p_category, s_region,
sum(lo_extendedprice)
FROM lineorder

JOIN customer ON lo_custkey = c_custkey
JOIN date dim ON lo_orderdate = d_datekey
JOIN part ON lo_partkey = p_ partkey
JOIN supplier ON lo_suppkey = s_suppkey
WHERE d year IN (1993, 1994, 1995)
AND p_container in ('JUMBO PACK')
GROUP BY d sellingseason, p_category, s_region
ORDER BY d sellingseason, p category, s _region

SELECT lo_orderdate, lo_partkey, lo_suppkey,
lo_extendedprice
FROM lineorder
WHERE lo orderdate IN
(SELECT d_datekey
FROM date_dim
WHERE d_year IN (1993,1994,1995))
AND lo_partkey IN
(SELECT p_partkey
FROM part
WHERE p container IN ('JUMBO PACK'))

. ORACLE
DRACI—E Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

REAL-WORLD PERFORMANCE

Star Transformation with Bitmap Indexes
When Bitmap Indexes are Effective

Combined filtering
across all dimension
tables filters most
fact table rows

@ CYNaR—gl ORACLE
REAL-WORLD PERFORMANCE Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

1. Build Filters

Execution Method for Star Transformation

Operation Object Name Predicate information 4 \
1
TEMP TABLE TRANSFORMATION customer
LOAD AS SELECT SYS_TEMP_OFD9FCA09 7D1FC714
TABLE ACCESS FULL DATE_DIM D_YEAR IN (1993, 1994, 1995)
LOAD AS SELECT SYS_TEMP_OFD9FCAOA 7D1FC714
\TABLE ACCESS FULL PART P_CONTAINER = 'JUMBO PACK’)
SORT GROUP BY
HASH JOIN LO_PARTKEY = P_PARTKEY
TABLE ACCESS FULL SYS_TEMP_OFD9FCAOA_7D1FC714
HASH JOIN LO_ORDERDATE = D_DATEKEY
TABLE ACCESS FULL SYS_TEMP_OFD9FCA09_7D1FC714
HASH JOIN LO_SUPPKEY =S_SUPPKEY
TABLE ACCESS FULL SUPPLIER date_dim supplier
VIEW VW_ST_F981A0CC
NESTED LOOPS
~PARTITION RANGE SUBQUERY TN \ J
BITMAP CONVERSION TO ROWIDS

BITMAP AND

BITMAP MERGE

BITMAP KEY ITERATION

BUFFER SORT ISELECT d_sellingseason, p_category, s_region,

TABLE ACCESS FULL SYS_TEMP_OFDIFCA09_7D1FC714 :;gn(db—e’l‘fi;‘:igzlce)

BITMAP INDEX RANGE SCAN LO_DATE B ' PRUPRRE T T b DATFREC JOIN customer ON lo_custkey = c_custkey
BITMAP MERGE JOIN date_dim ON lo_orderdate = d_datekey
BITMAP KEY ITERATION ggig Partl, gg iO_PartteY = P_Part:ey

Suj ler O Ssu e = S Ssu e

BUFFER SO T WHERE D ear TN (1993, 19311945 Ry

\ TABLE ACCESS FULL SYS_TEMP_OFD9FCAOA_7D1FC714] AND p container in ('JUMBO PACK')]
\.__ BITMAP INDEX RANGE SCAN LO PART B LO_PARTKEY =P_PARTKEY /| |groUP BY d_sellingseason, p_category, s_region
TABLE ACCESS BY USER ROWID LINEORDER ORDER BY d_sellingseason, p_category, s_region
@ CINal ORACLE
REAL-WORLD PERFORMANCE

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

Execution Method for Star Transformation
2. Extract Rows from the Fact table

Operation Object Name Predicate information
SELECT STATEMENT

TEMP TABLE TRANSFORMATION
LOAD AS SELECT
TABLE ACCESS FULL
LOAD AS SELECT
TABLE ACCESS FULL
SORT GROUP BY
HASH JOIN
TABLE ACCESS FULL
HASH JOIN
TABLE ACCESS FULL

1993
HASH JOIN LO_SUPPKEY = S_SUPPKEY

TABIE ACCESS FUIL SUPPLIER 1994
VIEW VW ST F981A0CC date_dim supplier
NESTED LOOPS 1995
PARTITION RANGE SUBQUERY
BITMAP CONVERSION TO ROWIDS

BITMAP AND

BITMAP MERGE

BITMAP KEY ITERATION
BUFFER SORT

TABLE ACCESS FULL SYS_TEMP_OFD9FCA09_7D1FC714 SELECT

SYS_TEMP_OFD9FCA09_7D1FC714
DATE_DIM

SYS_TEMP_OFD9FCAOA_7D1FC714
PART

D_YEAR IN (1993, 1994, 1995)

customer

P_CONTAINER ='JUMBO PACK'

LO_PARTKEY = P_PARTKEY

SYS_TEMP_OFD9FCAOA_7D1FC714

LO_ORDERDATE = D_DATEKEY

SYS_TEMP_OFD9FCA09_7D1FC714

d_sellingseason, p_category, s_region,
BITMAP INDEX RANGE SCAN LO_DATE_B

jice)
LO_ORDERDATE = D_DATEKEY [FROM 1ineord:er]
BITMAP MERGE TJOIN cust ON lo_custkey = c_custkey
BITMAP KEY ITERATION

JOIN date_dim ON lo_orderdate = d_datekey
BUFFER SORT

JOIN part ON lo_partkey = p_partkey
JOIN supplier ON lo suppkey = s suppkey
TABLE ACCESS FULL SYS_TEMP_OFD9FCAOA 7D1FC714 WHERE d_year IN (I993] -
BITMAP INDEX RANGE SCAN LO_PART B LO_PARTKEY =P_PARTKEY AND p_containe oMBO PRCK)
(_TABLE ACCESS BY USER ROWID [LINEORDER)| [EROUP BY
ORDER BY

d_sellingseason_, p_category, s_region
d_sellingseason, p_category, s_region

REAL-WORLD PERFORMANCE Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

Execution Method for Star Transformation
3. Join Back to Dimensions to Project Additional Columns

Operation

Object Name Predicate information
SELECT STATEMENT
TEMP TABLE TRANSFORMATION
LOAD AS SELECT SYS_TEMP_OFD9FCA09 7D1FC714
TABLE ACCESS FULL DATE_DIM

D_YEAR IN (1993, 1994, 1995)

LOAD AS SELECT

SYS_TEMP_OFD9FCAOA_7D1FC714

TABLE ACCESS FULL
SORT GROUP BY

PART

P_CONTAINER ='JUMBO PACK"

/HASH JOIN LO_PARTKEY = P_PARTKEY
TABLE ACCESS FULL SYS_TEMP_OFDIFCAOA_7D1FC714
HASH JOIN LO_ORDERDATE = D_DATEKEY
TABLE ACCESS FULL SYS_TEMP_OFD9FCA09 7D1FC714
HASH JOIN LO_SUPPKEY = S_SUPPKEY
_ TABLE ACCESS FULL SUPPLIER
VIEW

VW_ST_F981A0CC

NESTED LOOPS

PARTITION RANGE SUBQUERY

BITMAP CONVERSION TO ROWIDS
BITMAP AND

BITMAP MERGE

BITMAP KEY ITERATION
BUFFER SORT

TABLE ACCESS FULL

SYS_TEMP_OFD9FCA09_7D1FC714

BITMAP INDEX RANGE SCAN
BITMAP MERGE

LO_DATE_B

LO_ORDERDATE = D_DATEKEY

BITMAP KEY ITERATION

BUFFER SORT

TABLE ACCESS FULL

SYS_TEMP_OFD9FCAOA_7D1FC714

BITMAP INDEX RANGE SCAN

LO_PART B

LO_PARTKEY = P_PARTKEY

TABLE ACCESS BY USER ROWID

LINEORDER

“%%%%!%‘%“

supplier

>

ORACLE

ORACLE

REAL-WORLD PERFORMANCE

ISELECT d_sellingseason, p_category, s_region,
sum(lo_extendedprice)
FRO] lineorder
JOIN lSEanad sl inlaay p— dslsay
JOIN date dim ON lo orderdate = d datekey
part ON lo partkey = p partkey
supplier ON lo_suppkey = s_suppkey
WH. L_year (1993, 1994, 199))
AND p_container in ('JUMBO PACK')
GROUP BY d_sellingseason, p_category, s_region
ORDER BY d_sellingseason, p_category, s_region

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

Execution Method for Star Transformation
4. Aggregate/Sort Rows and Return Results

Operatio Obje Predicate 0 0
ELECT STATEMENT
TEMP TABLE TRANSFORMATION
LOAD AS SELECT SYS_TEMP_OFD9FCA09 7D1FC714
TABLE ACCESS FULL DATE_DIM D_YEAR IN (1993, 1994, 1995)
LOAD AS SELECT SYS_TEMP_OFD9FCAOA_7D1FC714
TABLE ACCESS FULL PART P_CONTAINER ="'JUMBO PACK'
|sorT GROUP BY
HASH JOIN LO_PARTKEY = P_PARTKEY
TABLE ACCESS FULL SYS_TEMP_OFD9FCAOA_7D1FC714
HASH JOIN LO_ORDERDATE = D_DATEKEY
TABLE ACCESS FULL SYS_TEMP_OFD9FCA09 7D1FC714
HASH JOIN LO_SUPPKEY =S_SUPPKEY
TABLE ACCESS FULL SUPPLIER
VIEW VW_ST F981A0CC

NESTED LOOPS

PARTITION RANGE SUBQUERY

BITMAP CONVERSION TO ROWIDS
BITMAP AND

BITMAP MERGE

BITMAP KEY ITERATION

BUFFER SORT

date_dim

customer

supplier

TABLE ACCESS FULL SYS_TEMP_OFD9FCA09_7D1FC714 PELECT e e C?teg“ly’ iy
BITMAP INDEX RANGE SCAN LO DATE B LO_ORDERDATE = D_DATEKEY FROM lineorder
BITMAP MERGE JOIN customer ON lo_custkey = c_custkey
BITMAP KEY ITERATION JOIN date_dim ON lo_orderdate = d_datekey
JOIN part ON lo_partkey = p_partkey
BUFFER SORT JOIN supplier ON lo suppkey = s_suppkey
TABLE ACCESS FULL SYS_TEMP_OFD9FCAOA_7D1FC714 WHERE d year IN (1993, 1994, 1995)
BITMAP INDEX RANGE SCAN LO_PART B LO_PARTKEY = P_PARTKEY AND p container in ('JUMBO PACK')
TABLE ACCESS BY USER ROWID LINEORDER [SROUP BY d_sellingseason, p_category, s_region
DRDER BY d sellingseason, p category, s region
REAL-WORLD PERFORMANCE

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

Star Transformation
Things to Think About

Operation Object Name Predicate information
SELECT STATEMENT
TEMP TABLE TRANSFORMATION
LOAD AS SELECT SYS_TEMP_OFD9FCA09_7D1FC714
TABLE ACCESS FULL DATE_DIM D_YEAR IN (1993, 1994, 1995) Assume it takes 5ms to do a random IO
LOAD AS SELECT SYS_TEMP_OFD9FCAOA_7D1FC714
TABLE ACCESS FULL PART P_CONTAINER ='JUMBO PACK"
SORT GROUP BY
HASH JOIN LO_PARTKEY = P_PARTKEY
TABLE ACCESS FULL SYS TEMP_OFD9FCAOA 7D1FC714 If we need 5 rows from the fact table and
HASH JOIN LO_ORDERDATE = D_DATEKEY ,]
TABLE ACCESS FULL SYS_TEMP_OFDIFCA09 7D1FC714 they re not in the buffer CaChe, how |0ng
HASH JOIN LO_SUPPKEY =S SUPPKEY would it take to extract the rows we
TABLE ACCESS FULL SUPPLIER
VIEW VW_ST_F981A0CC want?
NESTED LOOPS
__PARTITION RANGE SUBQUERY

BITMAP CONVERSION TO ROWIDS I
BITMAP AND

BITMAP MERGE
BITMAP KEY ITERATION

What if we need to extract 1,000,000
BUFFER SORT

rows?
TABLE ACCESS FULL SYS_TEMP_OFD9FCA09 _7D1FC714
BITMAP INDEX RANGE SCAN LO_DATE_B LO_ORDERDATE = D_DATEKEY
BITMAP MERGE
BITMAP KEY ITERATION
BUFFER SORT

TABLE ACCESS FULL

SYS_TEMP_OFD9FCAOA_7D1FC714
BITMAP INDEX RANGE SCAN LO_PART B
I TABLE ACCESS BY USER ROWID LINEORDER

LO_PARTKEY = P_PARTKEY

o EVNalN=gy ORACLE

REAL-WORLD PERFORMANCE

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

Star Transformation with Bitmap Indexes
Things to Think About

General Time & Wait Statistics IO Statistics
SQL Text SELECT /*+ MONITOR STAR_TRANSFORMATION(LI |_| Duration 3.9 Buffer Gets | 3 412K
Execution Started Thu Oct 9, 2014 11:43:29 AM Database Time 4.7m Requests | 691K
Last Refresh Time Thu Oct 9, 2014 11:47:24 AM PL/SQL & Java 0s
Execution ID 33554432 Activity % | 100 Cell Offload Efficien H | g h -ca rd | na | |ty
User MHALLAS_BITMAP
Fetch Calls 43 query ranin 3.9
e minutes
Plan Statistics | &2z Plan | |~ Activity | [Z] Metrics
Plan Hash Value 209828446 | [| Plan Note Th e num be r Of rows
Operation | Name req u i red fro m fa Ct Temp... |O | IOR... | L | Cell Offload... | A(

[BITMAP CONVERSION TO ROWIDS
[BITMAP AND
- BITMAP MERGE
= BITMAP KEY ITERATION

[BUFFER SORT

SYS_TEMP_OFD9FCA07_7D1FC714 \

TABLE ACCESS FULL

table after filtering is
important with index
access methods

BITMAP INDEX RANGE SCAN LO_DATE_B 22

- BITMAP MERGE 23
= BITMAP KEY ITERATION 24
[BUFFER SORT 25

TABLE ACCESS FULL SYS_TEMP_OFD9FCA08_7D1FC714 26

BITMAP INDEX RANGE SCAN LO_PART_B 27

TABLE ACCESS BY USER ROWID LINEORDER 28

39K 6,570
— 213
—— 3 714K
s 36 1,084K

30K 25 ! 1 30K
M. 1 084t 714K

1 34 WSS 5 7561 3,413K

3MB

iMB

13,321

| 173K
s 515K

| 26MB

1GB
7GB

Most of the time was
I with random 1/O
accessing fact table rows

ORACLE

ORACLE

REAL-WORLD PERFORMANCE

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

Star Transformation Summary

Technique

Primary Fact Table
Access Method

Requirements

Pros

Cons

B*Tree Indexes
with NL Joins

Star
transformation

B*Tree index access
Nested Loops joins

Rowid from bitmap index
Bitmap merge
Star transformation

Indexes on fact table

star_transformation_enabled
query_rewrite_integrity
PK/FK constraints

NOT NULL constraints
Bitmap indexes on fact table

Decent performance if number
of rows is very small and all
data accessed is satisfied from
memory

Excellent performance if
number of rows is small and all
data accessed is satisfied from
memory

Algorithmically weak; can’t
get fact table rows fast
enough

Poor performance if
number of rows from fact
table is high and requires
random 1/O

ORACLE

ORACLE

REAL-WORLD PERFORMANCE

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

Bloom Filters — before we get into the next part...

* Efficient way to filter data

* Bloom Filters created from
dimension tables and applied to
fact table during scan

* Utilizes swap join optimization and
yields right-deep plans

* Filtered data is pipelined to hash
joins

@ CYNaR—gl ORACLE
REAL-WORLD PERFORMANCE Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

Bloom Filter

@ CYNaR—gl ORACLE
REAL-WORLD PERFORMANCE Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

Bloom Filter
Build

This example uses 3 hash functions

10

@ CYNaR—gl ORACLE
REAL-WORLD PERFORMANCE Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

Bloom Filter
Build

10 20

@ CYNaR—gl ORACLE
REAL-WORLD PERFORMANCE Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

Bloom Filter
Build

10 20 30

@ CYNaR—gl ORACLE
REAL-WORLD PERFORMANCE Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

Bloom Filter
Build

10 20 30 40

@ CYNaR—gl ORACLE
REAL-WORLD PERFORMANCE Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

Bloom Filter
Bloom Filter passed Down

o CINa R ORACLE
REAL-WORLD PERFORMANCE Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

Bloom Filter
Test

Probable Match 10

10 20 30 40

@ CYNaR—gl ORACLE
REAL-WORLD PERFORMANCE Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

Bloom Filter
Test

Probable Match 30

10 20 30 40

@ CYNaR—gl ORACLE
REAL-WORLD PERFORMANCE Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

Bloom Filter
Test

Definite No Match 60

10 20 30 40

@ CYNaR—gl ORACLE
REAL-WORLD PERFORMANCE Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

Bloom Filter
Test

Probable Match 70

10 20 30 40

In this case, the match is in fact a false positive

@ CYNaR—gl ORACLE
REAL-WORLD PERFORMANCE Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

Bloom Filter e

| Id | Operation | Name | Rows | Bytes |

Identlfylng in Plans | @ | SELECT STATEMENT | | 631 7371 |
| 11 PX COORDINATOR | | | |

| 21 PX SEND QC (ORDER) | :TQIeee3 | 63 | 7371 |

| 31 SORT GROUP BY | | 631 7371 |

| 4 PX RECEIVE | | 631 7371 |

| 51 PX SEND RANGE | :TQleee2 | 63 | 7371 |

| 6| HASH GROUP BY | | 631 7371 |

1* 71 HASH JOIN | | 430 | 50310 |

. | 81— JOIN FILTER CREATE | :BFOGG@ | 4013 | 133K
Bloom Filter create I 9 | PX RECEIVE | | 4013 | 133KI
| 10 | PX SEND BROADCAST | :TQl0000 | 4013 | 133K

| 11 | PX BLOCK ITERATOR | | 4013 | 133KI

| TABLE ACCESS INMEMORY FULL | SUPPLIER | 4@13 | 133K|

HASH JOIN | | 10583 | 858KI

JOIN FILTER CREATE | :BFO@@1 | 31 | 1023 |

Bloom Filter use TABLE ACCESS INMEMORY FULL | DATE_DIM | 31 | 1023 |
HASH JOIN | | 845K 4QMI

JOIN FILTER CREATE | :BFO@O2 | 2332 | 65296 |

PX RECEIVE | | 2332 | 65296 |

| PX SEND BROADCAST | :TQle001 | 2332 | 65296 |

| PX BLOCK ITERATOR | | 2332 | 65296 |

| TABLE ACCESS INMEMORY FULL| PART | 2332 | 65296 |

| | JOIN FILTER USE | :BFOGO@ | 300M| 6294M]

| 23 | JOIN FILTER USE | :BFOOOL | 300M| 6294M

| 24 | JOIN FILTER USE | :BFOGO2 | 300M| 6294M]

| 25 | PX BLOCK ITERATOR | | 300MI 6294MI

I* 26 | TABLE ACCESS INMEMORY FULL| LINEORDER | 300MI 6294M|

REAL-WORLD PERFORMANCE

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

Choose Your Execution Method
Table Scans with Intelligent Filtering

* Queries extract many rows from Fact
table

* Database size large

Exadata or Oracle Database In-Memory

@ CYNaR—gl ORACLE
REAL-WORLD PERFORMANCE Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

Intelligent Full Scans

1. Build Bloom Filters and Hash Tables from Dimensions

o
Operation Object Name Predicate information part -
SELECT STATEMENT
SORT GROUP BY
HASH JOIN LO_SUPPKEY = S_SUPPKEY
TABLE ACCESS STORAGE FULL SUPPLIER
HASH JOIN
(JOIN FILTER CREATE :BF0001)
PART JOIN FILTER CREATE :BF0000 LO_ORDERDATE = D_DATEKEY
TABLE ACCESS STORAGE FULL DATE_DIM D_YEAR IN (1993, 1994, 1995
HASH JOIN
JOIN FILTER CREATE :BF0002 LO_PARTKEY = P_PARTKEY date dim BB
TABLE ACCESS STORAGE FULL PART P_CONTAINER ='JUMBO PACK' =
JOIN FILTER USE :BF0001
JOIN FILTER USE :BF0002
PARTITION RANGE JOIN-FILTER
TABLE ACCESS STORAGE FULL LINEORDER :BF0000

ISELECT d_sellingseason, p_category, s_region,
sum(lo_extendedprice)
FROM lineorder
JOIN customer ON lo_custkey = c_custkey
JOIN date_dim ON lo_orderdate = d_datekey
JOIN part ON lo_partkey = p_partkey
JOIN supplier ON lo suppkey = s suppkey
WHERE Eoimine 0 s Dol Doy]
AND p_container in ('JUMBO PACK')
GROUP BY e—seiding —p—curtegory —s—segion
ORDER BY d_sellingseason, p_category, s_region

REAL-WORLD PERFORMANCE Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

Intelligent Full Scans

2. Extract Rows from the Fact table

Operation Object Name Predicate information
SELECT STATEMENT
SORT GROUP BY
HASH JOIN LO_SUPPKEY = S_SUPPKEY
TABLE ACCESS STORAGE FULL SUPPLIER
HASH JOIN
JOIN FILTER CREATE :BF0001
PART JOIN FILTER CREATE :BF0000 LO_ORDERDATE = D_DATEKEY 1993
TABLE ACCESS STORAGE FULL DATE_DIM D_YEAR IN (1993, 1994, 1995)
HASH JOIN 1994
JOIN FILTER CREATE :BF0002 LO_PARTKEY =P_PARTKEY date dim
TABLE ACCESS STORAGE FULL PART P_CONTAINER = 'JUMBO PACK' =
(JOIN FILTER USE :BF0001 B 1995
JOIN FILTER USE :BF0002
PARTITION RANGE JOIN-FILTER
\ TABLE ACCESS STORAGE FULL LINEORDER :BF0000 .
ISELECT d_sellingseason, p_category, s_region,
sum (lo_extendedprice)
FROM lineorder
JOIN customer ON lo custkey = c_custkey
JOIN date_dim ON lo orderdate = d datekey
ON lo partkey p_partkey
ON lo suppke s suppke
d_year IN
AND p_containe P)
GROUP BY d_sellingseason, p_category, s_region
ORDER BY d_sellingseason, p_category, s_region
REAL-WORLD PERFORMANCE

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

Intelligent Full Scans

3. Join to Dimensions to Project additional columns

Operation Object Name Predicate information
SELECT STATEMENT
SORT GROUP BY
r|-|As|-| JOIN LO_SUPPKEY = S_SUPPKEY
TABLE ACCESS STORAGE FULL SUPPLIER
_HASH JOIN /
JOIN FILTER CREATE :BF0001
PART JOIN FILTER CREATE :BF0000 LO_ORDERDATE = D_DATEKEY
TABLE ACCESS STORAGE FULL DATE_DIM D_YEAR IN (1993, 1994, 1995)
HASH JOIN |
JOIN FILTER CREATE :BF0002 LO_PARTKEY =P_PARTKEY . I
TABLE ACCESS STORAGE FULL PART P_CONTAINER ='JUMBO PACK' date_dim SelEas
JOIN FILTER USE :BF0001
JOIN FILTER USE :BF0002
PARTITION RANGE JOIN-FILTER
TABLE ACCESS STORAGE FULL LINEORDER :BF0000

ISELECT d_sellingseason, p_category, s_region,
sum(lo_extendedprice)

F lineorder

JOIN couetames o OM 1o dsleay - iy
JOIN date_dim ON lo orderdate = d datekey
JOIN part ON lo partkey = p partkey

JOIN supplier ON lo suppkey = s_suppkey

WHERE d_year IN (1993, 1994, 1999)
AND p_container in ('JUMBO PACK')
GROUP BY d_sellingseason, p_category, s_region
ORDER BY d_sellingseason, p_category, s_region

REAL-WORLD PERFORMANCE Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

Intelligent Full Scans
4. Aggregate/Sort Rows and Return Results

Operation Object Name Predicate information
SORT GROUP BY
HASH JOIN LO_SUPPKEY = S_SUPPKEY
TABLE ACCESS STORAGE FULL SUPPLIER
HASH JOIN
JOIN FILTER CREATE :BF0001
PART JOIN FILTER CREATE :BF0000 LO_ORDERDATE = D_DATEKEY
TABLE ACCESS STORAGE FULL DATE_DIM D_YEAR IN (1993, 1994, 1995)
HASH JOIN
JOIN FILTER CREATE :BF0002 LO_PARTKEY = P_PARTKEY .
TABLE ACCESS STORAGE FULL PART P_CONTAINER ='JUMBO PACK’ date_dim
JOIN FILTER USE :BF0001
JOIN FILTER USE :BF0002
PARTITION RANGE JOIN-FILTER
TABLE ACCESS STORAGE FULL LINEORDER :BF0000

SELECT d sellingseason, p category, s region
sum(lo extendedprice
JOIN customer ON lo_custkey = c_custkey
JOIN date_dim ON lo_orderdate = d_datekey
JOIN part ON lo_partkey = p_partkey
JOIN supplier ON lo_suppkey = s_suppkey
WHERE d year IN (1993, 1994, 1995)
AND p container in ('JUMBO PACK')
[SROUP BY d sellingseason, p category, s region
DRDER BY d sellingseason, p category, s region]

o EVNalN=gy ORACLE

REAL-WORLD PERFORMANCE Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

Intelligent Filtering
Things to Think About

| Details
Plan Statistics | 4g2 Plan |~ Activity | [T] Metrics |
Plan Hash Value 2350785729 | [Plan Note

Operation ‘ Name | Lin... ‘ Estimated ... | Cost | Timeline(5s) Memory ... ‘ Temp (... ‘o..‘ ‘ 10 Req... ‘ 10.. ‘ Cell Offload Eff... | Activity %

I} SELECT STATEMENT 0 1 625

1 SORT GROUP BY 1 313 283K W |e—— 1 625 58KB —— 10

O HASH JOIN 2 4,476K 283K T 1 3,413K

}-TABLE ACCESS STORAGE FULL SUPPLIER 3 100K 90 - 1 100K

1 HASH JOIN 3,413K

JOIN FILTER CREATE 1,095

’ 1 PART JOIN FILTER CREATE 1,095

’ | TABLE ACCESS STORAGE FULL 1,095

5 HASH JOIN 3,413K

qu-Jom FILTER CREATE 30K

| | TABLE ACCESS STORAGE FULL 30K

2 JOIN FILTER USE 7,178K

I JOIN FILTER USE 7,178K

1 PARTITION RANGE JOIN-FILTER 7,178K
| TABLE ACCESS STORAGE FULL 7,178K 7MB @Bl 3,500 i 3GB o5 [20

ORACLE ORACLE’

REAL-WORLD PERFORMANCE Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

Full Scans with Intelligent Filtering Summary

Primary Fact Table

Technique Requirements Pros Cons
Access Method
B*Tree Indexes with e B*Treeindex access * Indexes on fact table Decent performance if number of Algorithmically weak; can’t get
NL Joins * Nested Loops joins rows is very small and all data fact table rows fast enough
accessed is satisfied from memory
Star transformation * Rowid from bitmap index e star_transformation_enabled Excellent performance if number of Poor performance if number of
* Bitmap merge e query_rewrite_integrity rows is small and all data accessed is rows from fact table is high and
e Star transformation * PK/FK constraints satisfied from memory requires random 1/0
° NOT NULL constraints
e Bitmap indexes on fact table
Full Scans with * Full scans e Exadata or DBIM Can handle high and low cardinality Infrastructure cost, scalability as
Intelligent Filtering * Swap join optimization & right- * cell_offload_processing queries to achieve consistent concurrency increases
deep tree . PK/FK constraints response times
* Bloom Filters e NOT NULL constraints

* Pipelined hash joins

REAL-WORLD PERFORMANCE

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

Table Scans with Intelligent Filtering

Things We Do for Performance

* Exploit Latest HW and SW technologies
Exadata and Database In-Memory
Hundreds of GB/second

Millions->Billions of Rows/second

* Specialist Execution plans and
algorithms, Swap join optimization and
right-deep trees

Exadata or Oracle Database In-Memory

@ CYNaR—gl ORACLE
REAL-WORLD PERFORMANCE Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

Table Scans with Intelligent Filtering
How We Do It

Hardware: CPUs, disks, In-Memory columnar layout
flash, InfiniBand

= s oftware: Smart Scan, HCC,
Storage Indexes

Scans and Access SIMD vector processing

Bloom Filters pushed Bloom Filters pushed

Filtering & Evaluation
down to storage down to column store

Exadata Database In Memory

@ CYNaR—gl ORACLE
REAL-WORLD PERFORMANCE Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

Swap Join Input Optimization
Left deep tree

° | HASHJOIN |
|
|

Q@ voon s O

v _— = TEy=

o CINa R ORACLE
Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |
REAL-WORLD PERFORMANCE

Swap Join Input Optimization

l HASH JOIN °
| |
| owmeom | HASH JOIN
Y @ Wsms | wion

ORACLE ORACLE
Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |
REAL-WORLD PERFORMANCE

Becomes a right deep tree

\ 45

o —

Optimizations after the Joins
Vector Transformation (In-Memory Aggregation)

* Queries extract many rows from Fact
table

* Database size large

* Aggregation on low cardinality
dimensions

Oracle Database In-Memory

* Optimizer costs the transformation

@ CYNaR—gl ORACLE
REAL-WORLD PERFORMANCE Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

In-Memory Aggregation
Why Do It?
* Goal is to do extra work up-front while

processing dimension tables to save time
downstream

* Scans and filtering takes place in the DBIM
column store

* Aggregation is performed as part of the fact
table access

* Build a cube as we scan the fact table to
avoid potentially costly aggregation

Oracle Database In-Memory

@ CYNaR—gl ORACLE
REAL-WORLD PERFORMANCE Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

Choose Your Execution Method
Vector Transformation

SELECT d _sellingseason, p_category, s_region,
sum(lo_extendedprice)
FROM lineorder
JOIN customer ON lo_custkey = c_custkey
JOIN date dim ON lo_orderdate = d_datekey
JOIN part ON lo_partkey = p_partkey
JOIN supplier ON lo_suppkey = s_suppkey
WHERE d year IN (1993, 1994, 1995)
AND p_container in ('JUMBO PACK')
GROUP BY d sellingseason, p_category, s_region
ORDER BY d sellingseason, p category, s _region

SELECT key vector(lo_orderdate), key vector(lo_partkey), key vector(lo_suppkey),
sum(lo_extendedprice)
FROM lineorder
WHERE key vector(lo_orderdate) IN
(SELECT key vector(d_datekey)
FROM date dim
WHERE d_year IN (1993,1994,1995))
AND key vector(lo_partkey) IN
(SELECT key vector (p_partkey)
FROM part
WHERE p container IN ('JUMBO PACK'))
GROUP BY key vector(lo_orderdate), key vector(lo_partkey), key vector(lo_suppkeu)

. ORACLE
DRACI—E Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

REAL-WORLD PERFORMANCE

In-Memory Aggregation Summary

Technique

Primary Fact Table
Access Method

Requirements

Pros

Cons

B*Tree Indexes with NL
Joins

Star transformation

Full Scans with Intelligent
Filtering

In-Memory Aggregation

B*Tree index access
Nested Loops joins

Rowid from bitmap index
Bitmap merge
Star transformation

Full scans

Swap join optimization & right-deep
tree

Bloom Filters and pipelined hash joins

Full scans
Vector Transformation

Indexes on fact table

star_transformation_enabled
query_rewrite_integrity
PK/FK constraints

NOT NULL constraints
Bitmap indexes on fact table

Exadata or DBIM
cell_offload_processing
PK/FK constraints

NOT NULL constraints

DBIM
PK/FK constraints
NOT NULL constraints

Decent performance if number of rows is
very small and all data accessed is satisfied
from memory

Excellent performance if number of rows is
small and all data accessed is satisfied from
memory

Can handle high and low cardinality queries
to achieve consistent response times

Excellent performance for both scan, filter,
and aggregation

Algorithmically weak; can’t get fact
table rows fast enough

Poor performance if number of rows
from fact table is high and requires
random I/O

Infrastructure cost, scalability as
concurrency increases

ORACLE

ORACLE

REAL-WORLD PERFORMANCE

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

Star Query Multi-User Demo

Part |

@ CYNaR—gl ORACLE
REAL-WORLD PERFORMANCE Copyright © 2014, Oracle and/or its affiliates. All rights reserved

Prescription
Convergence of Techniques and Technology

T)ata ase In-
i Parallel Execution In-Memory
Optimizer
Environment
Exadata e
Partitioning Data Types
Application Compression
Algorithms
Statistics Schgma
Design
Bloom Filters Constraints .
= _A = Star
uiC Transformation Clustering

ORACLE ORACLE

REAL-WORLD PERFORMANCE

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

The Prescription
Things You Must Do to Ensure Optimal Execution Plans

PHARMACY | | FARMACIA

PHARMACIE| | APOTHEKE

@ CYNaR—gl ORACLE
REAL-WORLD PERFORMANCE Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

The Prescription
What you must do

Constraints

Data Types

Statistics

Partitioning

ORACLE

ORACLE
REAL-WORLD PERFORMANCE

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

What You Must Do

Constraints

* NOT NULL Constraints on Join Keys

* Primary Key Constraints on Dimension
Join Keys

* Foreign Key Constraints on Fact Join Keys

e CVNal g ORACLE
REAL-WORLD PERFORMANCE Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

What You Must Do

NOT NULL Constraints

 For each row in lineorder, how many PEOLL LmEEEelEE

rows are returned from customer? ki) customer ON
lo custkey = c_custkey

* Without constraints, what if lo_custkey

is NULLable? SQL> desc lineorder
: : N Null? T
* Even if lo_custkey is NOT NULL, how e S e
many rows will join with customer? 0? o
1? More than 17 LO CUSTKEY NOT NULL NUMBER
* NOT NULL constraints are essentially
free, no reason not to implement SQL> desc customer
Name Null? Type

* Several optimizations depend onthis | _________ _________ ________
information! C_CUSTKEY NOT NULL NUMBER

@ CYNaR—gl ORACLE
REAL-WORLD PERFORMANCE Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

What You Must Do

Primary Key and Foreign Key Constraints

alter table customer

* There must be a primary key on the add constraint customer pk

dimension table primary key (c_custkey)
: RELY;
* There must be a foreign key on the fact :
table alter table lineorder
add constraint lo_customer pk
 The state of the constraint depends on trust f°’ffe19n key (lo_custkey)
in the ETL process and volume of data rererences
customer (c_custkey)
RELY

* Constraints must be in RELY state
DISABLE NOVALIDATE;

* Itis not necessary to enforce constraintson gigfer system
the fact table set query rewrite integrity=TRUSTED;

* You need to tell the optimizer you can trust

constraints in the RELY state With PK/FK constraints, exactly 1 row is

returned from dimension table for a fact

row
@ CYNaR—gl ORACLE
REAL-WORLD PERFORMANCE Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

What You Must Do
Validating ETL/ELT

* How do we validate our data when our
constraints are not enforced?

* |n other words, when constraints are in
RELY mode, how to we ensure we can
rely on the quality of data being inserted
into our fact table?

* This SQL checks for rows in lineorder for
values of lo_custkey which do not exist
in the customer dimension table

ORACLE

SELECT *

FROM lineorder

LEFT OUTER JOIN customer
ON lo custkey = c_custkey
WHERE c custkey IS NULL;

- REAL-WORLD PERFORMANCE Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

What You Must Do

Validating ETL/ELT

* We can also validate the rows in SELECT *

. . : . . FROM lineorder
lineorder against multiple dimensions N

ON lo custkey = c_custkey
LEFT OUTER JOIN date dim

. . ON lo orderdate = d datekey
[— —
Check the lineorder table for rows which LEFT OUTER JOIN part

contain keys that do not exist in the ON lo partkey = p partkey

dimension tables LEFT OUTER JOIN supplier
ON lo_suppkey = s_suppkey

WHERE c_custkey IS NULL
OR d_datekey IS NULL
OR p partkey IS NULL
OR s_suppkey IS NULL;

@ CYNaR—gl ORACLE
REAL-WORLD PERFORMANCE Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

What You Must Do

Data Types

* Data types need to be the same on
Primary Key and Foreign Key columns

* Data type precision needs to be the
same on Primary Key and Foreign Key
columns

* Avoid runtime data type conversion

lineorder
customer ON
lo custkey = c_custkey

F'ROM
JOIN

SQL> desc lineorder
Name Null-?

LO_ CUSTKEY NOT NULL

SQL> desc customer

from T TAB WKO 04 all

where (all.DIMENSIONO2, all.DIMENSIONO8) in (

select alZ.BRAND_CODE, alZ.STYLE_COLOR_CODE
from

((all.MONTH = 1

and to_char (to_numb

11.YEAR = 2013)
mension01)) in ('24'))

T GASDM LU STYLE COLOR alZ2)

Name Null®?

C_CUSTKEY NOT NULL

ORACLE

REAL-WORLD PERFORMANCE

ORACLE

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

What You Must Do

Ensure Optimizer Statistics are
Accurate and Representative

* Think about skew
* Think about correlation

* Do not rely on Dynamic Statistics
alone

* Think about how and when to
gather statistics

DRACLE' ORACLGE
REAL-WORLD PERFORMANCE

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. | Oracle Confidential — Internal/Restricted/Highly Restricted

68

What You Must Do

Partition the Fact Table on the Time Dimension

* Typically RANGE or INTERVAL M

* Reduces the number of rows extracted lineorder
from the fact table (i.e., early filtering) 1993
1994

supplier

1995

* Improves manageability

Applicable regardless of execution method

@ CYNaR—gl ORACLE
REAL-WORLD PERFORMANCE Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

What You Must Do

Partition the Fact Table on the Time Dimension

Example: Interval partitioning

ORACLE ORACLE
REAL-WORLD PERFORMANCE

CREATE TABLE
LINEORDER

(
"LO ORDERKEY" NUMBER NOT NULL ENABLE
, "LO_LINENUMBER" NUMBER

... other columns

)

partition by range

(

)
interval (numtoyminterval(l, 'MONTH'))

(

LO_ORDERDATE

partition R199201 values less than
(to_date('19920201', 'YYYYMMDD'))

)

.
4

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

What Do You Gain by Following the Prescription?

* Better cardinality estimates
* Better execution plans
* More access paths available

* Ability for the optimizer to perform
many transformations and optimizations
(join elimination, materialized view
rewrites, In-Memory Aggregation
transformation, and many more)

* Partition pruning

@ CYNaR—gl ORACLE
REAL-WORLD PERFORMANCE Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

Star Query Fundamentals

@ CYNaR—gl ORACLE
REAL-WORLD PERFORMANCE Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

Edge Conditions

Snowflake Schema

cust_mv

product customer product

supplier

supplier

Collapse your dimension tables
into materialized views

@ CYNaR—gl ORACLE
REAL-WORLD PERFORMANCE Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

Edge Conditions

Relationships between Dimensions

m ~
M q o

Examine data model, collapse
your dimension tables into
ORACLE ORACLE’
REAL-WORLD PERFORMANCE

materialized views

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

Edge Conditions

Common Join Columns

product

customer product customer
supplier ‘ calendar supplier
calendar

Examine data model, look to
see if there are missing

columns

@ CYNaR—gl ORACLE
REAL-WORLD PERFORMANCE Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

Edge Conditions

Not “Completing” Joins

supplier

SELECT d.year, s.nation, c.nation,
SUM(1.extendedprice)
FROM lineorder 1
JOIN calendar d ON 1l.lo_orderdate = d_datekey
JOIN supplier s ON l.lo suppkey = s.suppkey
Calendar JOIN customer c¢ ON l.lo:suppkey = c.custkey
. JOIN region r ON s.region_id = r.region_id
reg|on WHERE d.year IN (1993, 1994, 1995)
AND r.region code = ‘ASIA’
AND c.region_id = s.region_id
GROUP BY d.year, s.nation, c.nation,
ORDER BY d.year, s.nation, c.nation;

customer

gueries providing filter
predicates once for both
dimension joins and not

ORACLE ORACLE

REAL-WORLD PERFORMANCE

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

Edge Conditions

“Completing” Joins

calendar

ORACLE

supplier

customer

ORACLE’

REAL-WORLD PERFORMANCE

[SELECT d.year, s.nation, c.nation,
SUM (1.extendedprice)
FROM lineorder 1
JOIN calendar d ON 1l.lo_orderdate
JOIN supplier s ON 1l.lo_suppkey =
JOIN customer ¢ ON 1l.lo_suppkey =
JOIN region rl ON s.region_id =
JOIN region r2 ON c.region_id =
WHERE d.year IN (1993, 1994, 1995)
AND rl.region_code = ‘ASIA’
AND r2.region_code = ‘ASIA’
GROUP BY d.year, s.nation, c.nation,
ORDER BY d.year, s.nation, c.nation;

Qonl

d_datekey

. suppkey
.custkey
rl.region_id
r2.region_id

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

Recent Results 1000X Project

N & =a

Baseline: Baseline: 2.4 Days -Baseline: 2.5 Hours
Code Changes: 4.3 Hours Code Changes: 27 Mins Code Changes: 2.5 Hours
Correct Usage: 29 Secs Correct Usage: 7.5 Mins Correct Usage: 4 Secs
Bug Fixes: 12 Secs Bug Fixes: 4.5 Mins Bug Fixes: 0.90 Secs
Final: 12 Secs Final: 4.5 Mins Final: 0.90 Secs
Speed up: 1355.57 Speed up: 768 Speed up: 9000

ot yNal=gy ORACLE
REAL-WORLD PERFORMANCE Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

ORACLE

