

A Day of Real-World Performance

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

A Day of Real-World Performance

3/19/2015

Andrew Holdsworth, Tom Kyte, Graham Wood

Why is My SQL
Slow ?

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

Slow ?

Data Warehouse Death Spiral
• HW CPU Sizing 10X

– Sized like an OLTP System

• I/O Sizing 10X
– Sized by Space requirements
– Cannot use Parallel Query

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

– Cannot use Parallel Query

• Using the the incorrect Query Optimization Techniques 10X
– Over Indexed Database
– Data Loads and ETL running to Slow

• System Over loaded to Make the CPU look Busy
– 100s of Concurrent Queries taking Hours to Execute

Defined by:

• Analytics / BI queries

• Process large numbers of rows

• Append-only

Extreme Data Warehouse Workloads

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

• Append-only

• Resource intensive
• Parallel Processing Required
• Recruit all Available HW for a single task

Data Loading
Anatomy of an External Table
create table FAST_LOAD
(
column definition list ...
)
organization external
(type oracle_loader
default directory SPEEDY_FILESYSTEM
preprocessor exec_file_dir:’zcat.sh’
characterset ‘ZHS16GBK’
badfile ERROR_DUMP:’FAST_LOAD.bad’

External Table
Definition

Reference the Mount
Point

Uncompress the data using a
secure wrapper

The Characterset must match the

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. | © 2009 Oracle Corporation – Proprietary and Confidential

badfile ERROR_DUMP:’FAST_LOAD.bad’
logfile ERROR_DUMP:’FAST_LOAD.log’
(
file column mapping list ...
)
location
(file_1.gz, file_2.gz, file_3.gz, file_4.gz)
reject limit 1000
parallel 4
/

The Characterset must match the
Characterset of the Files

Note Compressed Files

Parallel should match or be
less than the number of
Files

Validation Example
Set based processing vs. row by row

Time

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |© 2009 Oracle Corporation – Proprietary and Confidential

Time
H:MI:SS

1 Terabyte Loaded and Ready To Go In 20 Minutes
0:39

1:44

0:51

1:09

0:22

0:32

Create Tablespaces and run DDL

Initial 1TB Load

Gather Statistics

Daily Incremental Load

Referential Integrity Check

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |© 2009 Oracle Corporation – Proprietary and Confidential

9:55

3:36

Referential Integrity Check

Transform Data

Exchange and Incremental Statistics

Query from Hell

Requirements for Interactive Performance for DW Query

• Analytics at the Speed of Thought
• Predictable Response Times
• No runaway queries

Business Goals

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

No runaway queries
• Most frequent implementation is Star/Snowflake or Dimensional Schema

Why a Dimensional Schema?
• Dimensional schemas are schemas in

which data is organized into
facts, dimensions

• “Facts” represent events, such as
sales, logins, orders, etc.

• Dimensions contain reference information Fact

Dimension

Dimension

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

• Dimensions contain reference information
about facts

• Fact tables are denormalized tables that
store data for multiple dimensions

• Provides ability to retrieve all “interesting”
detailed information from a single table
with only joins to smaller dimension
tables

Fact

Dimension Dimension

What is a Dimensional Schema?
• Dimensional schemas are either star

schemas or snowflake schemas

• Schemas consist of fact tables and
dimension tables

• The Fact table stores measures;
i.e., order quantity, net price, etc.

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

i.e., order quantity, net price, etc.

• Dimension tables store attributes to
describe facts; i.e., month, customer
name, etc.

• Tables are joined using keys

• Dimensional queries are designed to
run on dimensional schemas

Shape and Structure of a Typical Dimensional Query
SELECT d_sellingseason, p_category, s_region,

SUM(lo_extendedprice)
FROM lineorder

JOIN customer ON lo_custkey = c_custkey
JOIN date_dim ON lo_orderdate = d_datekey
JOIN part ON lo_partkey = p_partkey
JOIN supplier ON lo_suppkey = s_suppkey

WHERE d_year IN (1993, 1994, 1995)
AND p_container in ('JUMBO PACK')

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

AND p_container in ('JUMBO PACK')
GROUP BY d_sellingseason, p_category, s_region
ORDER BY d_sellingseason, p_category, s_region

• Choose your fact table
• Complete the star by defining relationships with joins to dimension tables
• Choose filter criteria based upon dimension attributes
• Choose measures for aggregation
• Choose segmentation/roll up columns
• Choose grouping requirements
• Choose ordering requirements

Star Query Race Demo

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

Star Query Race Demo

• Access the fact table once

• Filter out all the rows you’re NOT
interested in as early as possible

The Goal

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

• i.e. maximize row rejection

Star Query Execution Plans

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

Star Query Execution Plans

part

1 Build Filters
Nested Loops with B*Tree Indexes

Operation Object Name Predicate information

SELECT STATEMENT

SORT GROUP BY

NESTED LOOPS

NESTED LOOPS

NESTED LOOPS

part customer

lineorder

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

date_dim
NESTED LOOPS

NESTED LOOPS

TABLE ACCCESS BY LOCAL INDEX ROWID PART P_CONTAINER = 'JUMBO PACK'

INDEX RANGE_SCAN PART_CONTAINER_N

PARTITION RANGE ALL LO_ORDERDATE = D_DATEKEY

TABLE ACCESS BY LOCAL INDEX ROWID LINEORDER

INDEX RANGE_SCAN LO_PART_N

TABLE ACCESS BY INDEX ROWID DATE_DIM D_YEAR IN (1993, 1994, 1995)

INDEX UNIQUE SCAN DATE_DIM_PK LO_ORDERDATE = D_DATEKEY

TABLE ACCESS BY INDEX ROWID SUPPLIER

INDEX UNIQUE SCAN SUPPLIER_PK LO_SUPPKEY = S_SUPPKEY

SELECT d_sellingseason, p_category, s_region,
sum(lo_extendedprice)
FROM lineorder

JOIN customer ON lo_custkey = c_custkey
JOIN date_dim ON lo_orderdate = d_datekey
JOIN part ON lo_partkey = p_partkey
JOIN supplier ON lo_suppkey = s_suppkey

WHERE d_year IN (1993, 1994, 1995)
AND p_container in ('JUMBO PACK')

GROUP BY d_sellingseason, p_category, s_region
ORDER BY d_sellingseason, p_category, s_region

supplier

Operation Object Name Predicate information

SELECT STATEMENT

SORT GROUP BY

NESTED LOOPS

NESTED LOOPS

NESTED LOOPS

part

2. Extract Rows from the Fact table
Nested Loops with B*Tree Indexes

customer

lineorderlineorder

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

NESTED LOOPS

NESTED LOOPS

TABLE ACCCESS BY LOCAL INDEX ROWID PART P_CONTAINER = 'JUMBO PACK'

INDEX RANGE_SCAN PART_CONTAINER_N

PARTITION RANGE ALL LO_ORDERDATE = D_DATEKEY

TABLE ACCESS BY LOCAL INDEX ROWID LINEORDER

INDEX RANGE_SCAN LO_PART_N

TABLE ACCESS BY INDEX ROWID DATE_DIM D_YEAR IN (1993, 1994, 1995)

INDEX UNIQUE SCAN DATE_DIM_PK LO_ORDERDATE = D_DATEKEY

TABLE ACCESS BY INDEX ROWID SUPPLIER

INDEX UNIQUE SCAN SUPPLIER_PK LO_SUPPKEY = S_SUPPKEY

date_dim

SELECT d_sellingseason, p_category, s_region,
sum(lo_extendedprice)
FROM lineorder

JOIN customer ON lo_custkey = c_custkey
JOIN date_dim ON lo_orderdate = d_datekey
JOIN part ON lo_partkey = p_partkey
JOIN supplier ON lo_suppkey = s_suppkey

WHERE d_year IN (1993, 1994, 1995)
AND p_container in ('JUMBO PACK')

GROUP BY d_sellingseason, p_category, s_region
ORDER BY d_sellingseason, p_category, s_region

supplier

Operation Object Name Predicate information

SELECT STATEMENT

SORT GROUP BY

NESTED LOOPS

NESTED LOOPS

NESTED LOOPS

part

3. Join to Dimensions to Project Additional Columns
Nested Loops with B*Tree Indexes

customer

lineorder

customer

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

NESTED LOOPS

NESTED LOOPS

TABLE ACCCESS BY LOCAL INDEX ROWID PART P_CONTAINER = 'JUMBO PACK'

INDEX RANGE_SCAN PART_CONTAINER_N

PARTITION RANGE ALL LO_ORDERDATE = D_DATEKEY

TABLE ACCESS BY LOCAL INDEX ROWID LINEORDER

INDEX RANGE_SCAN LO_PART_N

TABLE ACCESS BY INDEX ROWID DATE_DIM D_YEAR IN (1993, 1994, 1995)

INDEX UNIQUE SCAN DATE_DIM_PK LO_ORDERDATE = D_DATEKEY

TABLE ACCESS BY INDEX ROWID SUPPLIER

INDEX UNIQUE SCAN SUPPLIER_PK LO_SUPPKEY = S_SUPPKEY

suppliersupplierdate_dim

SELECT d_sellingseason, p_category, s_region,
sum(lo_extendedprice)
FROM lineorder

JOIN customer ON lo_custkey = c_custkey
JOIN date_dim ON lo_orderdate = d_datekey
JOIN part ON lo_partkey = p_partkey
JOIN supplier ON lo_suppkey = s_suppkey

WHERE d_year IN (1993, 1994, 1995)
AND p_container in ('JUMBO PACK')

GROUP BY d_sellingseason, p_category, s_region
ORDER BY d_sellingseason, p_category, s_region

date_dim

Operation Object Name Predicate information

SELECT STATEMENT

SORT GROUP BY

NESTED LOOPS

NESTED LOOPS

NESTED LOOPS

part

4. Aggregate/Sort Row and Return Results
Nested Loops with B*Tree Indexes

customer

lineorder

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

NESTED LOOPS

NESTED LOOPS

TABLE ACCCESS BY LOCAL INDEX ROWID PART P_CONTAINER = 'JUMBO PACK'

INDEX RANGE_SCAN PART_CONTAINER_N

PARTITION RANGE ALL LO_ORDERDATE = D_DATEKEY

TABLE ACCESS BY LOCAL INDEX ROWID LINEORDER

INDEX RANGE_SCAN LO_PART_N

TABLE ACCESS BY INDEX ROWID DATE_DIM D_YEAR IN (1993, 1994, 1995)

INDEX UNIQUE SCAN DATE_DIM_PK LO_ORDERDATE = D_DATEKEY

TABLE ACCESS BY INDEX ROWID SUPPLIER

INDEX UNIQUE SCAN SUPPLIER_PK LO_SUPPKEY = S_SUPPKEY

date_dim

SELECT d_sellingseason, p_category, s_region,
sum(lo_extendedprice)
FROM lineorder

JOIN customer ON lo_custkey = c_custkey
JOIN date_dim ON lo_orderdate = d_datekey
JOIN part ON lo_partkey = p_partkey
JOIN supplier ON lo_suppkey = s_suppkey

WHERE d_year IN (1993, 1994, 1995)
AND p_container in ('JUMBO PACK')

GROUP BY d_sellingseason, p_category, s_region
ORDER BY d_sellingseason, p_category, s_region

supplier

Things to Think About
Nested Loops with B*Tree Indexes

Ran 3.4 hours

Most of the time

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

Most of the time
was in accessing fact

table rows to be
rejected later

3.4 hours = not good

B*Tree Index with Nested Loops Joins Summary

Technique Primary Fact Table
Access Method Requirements Pros Cons

B*Tree Indexes
with NL Joins

• B*Tree index access
• Nested Loops joins

• Indexes on fact table Decent performance if number
of rows is very small and all
data accessed is satisfied from
memory

Algorithmically weak; can’t
get fact table rows fast
enough

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

Star Transformation with Bit Mapped Indexes

SELECT d_sellingseason, p_category, s_region,
sum(lo_extendedprice)
FROM lineorder

JOIN customer ON lo_custkey = c_custkey
JOIN date_dim ON lo_orderdate = d_datekey
JOIN part ON lo_partkey = p_partkey
JOIN supplier ON lo_suppkey = s_suppkey

WHERE d_year IN (1993, 1994, 1995)
AND p_container in ('JUMBO PACK')

GROUP BY d_sellingseason, p_category, s_region
ORDER BY d_sellingseason, p_category, s_region

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

ORDER BY d_sellingseason, p_category, s_region

SELECT lo_orderdate, lo_partkey, lo_suppkey,
lo_extendedprice
FROM lineorder
WHERE lo_orderdate IN

(SELECT d_datekey
FROM date_dim
WHERE d_year IN (1993,1994,1995))

AND lo_partkey IN
(SELECT p_partkey

FROM part
WHERE p_container IN ('JUMBO PACK'))

When Bitmap Indexes are Effective
Star Transformation with Bitmap Indexes

Combined filtering
across all dimension

tables filters most
fact table rows

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

fact table rows

part

Execution Method for Star Transformation
1. Build Filters

Operation Object Name Predicate information

SELECT STATEMENT

TEMP TABLE TRANSFORMATION

LOAD AS SELECT SYS_TEMP_0FD9FCA09_7D1FC714

TABLE ACCESS FULL DATE_DIM D_YEAR IN (1993, 1994, 1995)

LOAD AS SELECT SYS_TEMP_0FD9FCA0A_7D1FC714

TABLE ACCESS FULL PART P_CONTAINER = 'JUMBO PACK'

SORT GROUP BY

HASH JOIN LO_PARTKEY = P_PARTKEY

TABLE ACCESS FULL SYS_TEMP_0FD9FCA0A_7D1FC714

HASH JOIN LO_ORDERDATE = D_DATEKEY

TABLE ACCESS FULL SYS_TEMP_0FD9FCA09_7D1FC714

HASH JOIN LO_SUPPKEY = S_SUPPKEY

part customer

lineorder

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

date_dim
HASH JOIN LO_SUPPKEY = S_SUPPKEY

TABLE ACCESS FULL SUPPLIER

VIEW VW_ST_F981A0CC

NESTED LOOPS

PARTITION RANGE SUBQUERY

BITMAP CONVERSION TO ROWIDS

BITMAP AND

BITMAP MERGE

BITMAP KEY ITERATION

BUFFER SORT

TABLE ACCESS FULL SYS_TEMP_0FD9FCA09_7D1FC714

BITMAP INDEX RANGE SCAN LO_DATE_B LO_ORDERDATE = D_DATEKEY

BITMAP MERGE

BITMAP KEY ITERATION

BUFFER SORT

TABLE ACCESS FULL SYS_TEMP_0FD9FCA0A_7D1FC714

BITMAP INDEX RANGE SCAN LO_PART_B LO_PARTKEY = P_PARTKEY

TABLE ACCESS BY USER ROWID LINEORDER

SELECT d_sellingseason, p_category, s_region,
sum(lo_extendedprice)
FROM lineorder

JOIN customer ON lo_custkey = c_custkey
JOIN date_dim ON lo_orderdate = d_datekey
JOIN part ON lo_partkey = p_partkey
JOIN supplier ON lo_suppkey = s_suppkey

WHERE d_year IN (1993, 1994, 1995)
AND p_container in ('JUMBO PACK')

GROUP BY d_sellingseason, p_category, s_region
ORDER BY d_sellingseason, p_category, s_region

date_dim supplier

Operation Object Name Predicate information

SELECT STATEMENT

TEMP TABLE TRANSFORMATION

LOAD AS SELECT SYS_TEMP_0FD9FCA09_7D1FC714

TABLE ACCESS FULL DATE_DIM D_YEAR IN (1993, 1994, 1995)

LOAD AS SELECT SYS_TEMP_0FD9FCA0A_7D1FC714

TABLE ACCESS FULL PART P_CONTAINER = 'JUMBO PACK'

SORT GROUP BY

HASH JOIN LO_PARTKEY = P_PARTKEY

TABLE ACCESS FULL SYS_TEMP_0FD9FCA0A_7D1FC714

HASH JOIN LO_ORDERDATE = D_DATEKEY

TABLE ACCESS FULL SYS_TEMP_0FD9FCA09_7D1FC714

HASH JOIN LO_SUPPKEY = S_SUPPKEY

TABLE ACCESS FULL SUPPLIER

part

Execution Method for Star Transformation
2. Extract Rows from the Fact table

customer

lineorder

1993

1994

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

TABLE ACCESS FULL SUPPLIER

VIEW VW_ST_F981A0CC

NESTED LOOPS

PARTITION RANGE SUBQUERY

BITMAP CONVERSION TO ROWIDS

BITMAP AND

BITMAP MERGE

BITMAP KEY ITERATION

BUFFER SORT

TABLE ACCESS FULL SYS_TEMP_0FD9FCA09_7D1FC714

BITMAP INDEX RANGE SCAN LO_DATE_B LO_ORDERDATE = D_DATEKEY

BITMAP MERGE

BITMAP KEY ITERATION

BUFFER SORT

TABLE ACCESS FULL SYS_TEMP_0FD9FCA0A_7D1FC714

BITMAP INDEX RANGE SCAN LO_PART_B LO_PARTKEY = P_PARTKEY

TABLE ACCESS BY USER ROWID LINEORDER

date_dim

SELECT d_sellingseason, p_category, s_region,
sum(lo_extendedprice)
FROM lineorder

JOIN customer ON lo_custkey = c_custkey
JOIN date_dim ON lo_orderdate = d_datekey
JOIN part ON lo_partkey = p_partkey
JOIN supplier ON lo_suppkey = s_suppkey

WHERE d_year IN (1993, 1994, 1995)
AND p_container in ('JUMBO PACK')

GROUP BY d_sellingseason, p_category, s_region
ORDER BY d_sellingseason, p_category, s_region

supplier
1994

1995

part

Execution Method for Star Transformation
3. Join Back to Dimensions to Project Additional Columns

part customer

lineorder

customer

Operation Object Name Predicate information

SELECT STATEMENT

TEMP TABLE TRANSFORMATION

LOAD AS SELECT SYS_TEMP_0FD9FCA09_7D1FC714

TABLE ACCESS FULL DATE_DIM D_YEAR IN (1993, 1994, 1995)

LOAD AS SELECT SYS_TEMP_0FD9FCA0A_7D1FC714

TABLE ACCESS FULL PART P_CONTAINER = 'JUMBO PACK'

SORT GROUP BY

HASH JOIN LO_PARTKEY = P_PARTKEY

TABLE ACCESS FULL SYS_TEMP_0FD9FCA0A_7D1FC714

HASH JOIN LO_ORDERDATE = D_DATEKEY

TABLE ACCESS FULL SYS_TEMP_0FD9FCA09_7D1FC714

HASH JOIN LO_SUPPKEY = S_SUPPKEY

TABLE ACCESS FULL SUPPLIER

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

suppliersupplierdate_dim

SELECT d_sellingseason, p_category, s_region,
sum(lo_extendedprice)
FROM lineorder

JOIN customer ON lo_custkey = c_custkey
JOIN date_dim ON lo_orderdate = d_datekey
JOIN part ON lo_partkey = p_partkey
JOIN supplier ON lo_suppkey = s_suppkey

WHERE d_year IN (1993, 1994, 1995)
AND p_container in ('JUMBO PACK')

GROUP BY d_sellingseason, p_category, s_region
ORDER BY d_sellingseason, p_category, s_region

date_dim
TABLE ACCESS FULL SUPPLIER

VIEW VW_ST_F981A0CC

NESTED LOOPS

PARTITION RANGE SUBQUERY

BITMAP CONVERSION TO ROWIDS

BITMAP AND

BITMAP MERGE

BITMAP KEY ITERATION

BUFFER SORT

TABLE ACCESS FULL SYS_TEMP_0FD9FCA09_7D1FC714

BITMAP INDEX RANGE SCAN LO_DATE_B LO_ORDERDATE = D_DATEKEY

BITMAP MERGE

BITMAP KEY ITERATION

BUFFER SORT

TABLE ACCESS FULL SYS_TEMP_0FD9FCA0A_7D1FC714

BITMAP INDEX RANGE SCAN LO_PART_B LO_PARTKEY = P_PARTKEY

TABLE ACCESS BY USER ROWID LINEORDER

part

Execution Method for Star Transformation
4. Aggregate/Sort Rows and Return Results

customer

lineorder

Operation Object Name Predicate information

SELECT STATEMENT

TEMP TABLE TRANSFORMATION

LOAD AS SELECT SYS_TEMP_0FD9FCA09_7D1FC714

TABLE ACCESS FULL DATE_DIM D_YEAR IN (1993, 1994, 1995)

LOAD AS SELECT SYS_TEMP_0FD9FCA0A_7D1FC714

TABLE ACCESS FULL PART P_CONTAINER = 'JUMBO PACK'

SORT GROUP BY

HASH JOIN LO_PARTKEY = P_PARTKEY

TABLE ACCESS FULL SYS_TEMP_0FD9FCA0A_7D1FC714

HASH JOIN LO_ORDERDATE = D_DATEKEY

TABLE ACCESS FULL SYS_TEMP_0FD9FCA09_7D1FC714

HASH JOIN LO_SUPPKEY = S_SUPPKEY

TABLE ACCESS FULL SUPPLIER

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

date_dim

SELECT d_sellingseason, p_category, s_region,
sum(lo_extendedprice)
FROM lineorder

JOIN customer ON lo_custkey = c_custkey
JOIN date_dim ON lo_orderdate = d_datekey
JOIN part ON lo_partkey = p_partkey
JOIN supplier ON lo_suppkey = s_suppkey

WHERE d_year IN (1993, 1994, 1995)
AND p_container in ('JUMBO PACK')

GROUP BY d_sellingseason, p_category, s_region
ORDER BY d_sellingseason, p_category, s_region

supplier
TABLE ACCESS FULL SUPPLIER

VIEW VW_ST_F981A0CC

NESTED LOOPS

PARTITION RANGE SUBQUERY

BITMAP CONVERSION TO ROWIDS

BITMAP AND

BITMAP MERGE

BITMAP KEY ITERATION

BUFFER SORT

TABLE ACCESS FULL SYS_TEMP_0FD9FCA09_7D1FC714

BITMAP INDEX RANGE SCAN LO_DATE_B LO_ORDERDATE = D_DATEKEY

BITMAP MERGE

BITMAP KEY ITERATION

BUFFER SORT

TABLE ACCESS FULL SYS_TEMP_0FD9FCA0A_7D1FC714

BITMAP INDEX RANGE SCAN LO_PART_B LO_PARTKEY = P_PARTKEY

TABLE ACCESS BY USER ROWID LINEORDER

Operation Object Name Predicate information

SELECT STATEMENT

TEMP TABLE TRANSFORMATION

LOAD AS SELECT SYS_TEMP_0FD9FCA09_7D1FC714

TABLE ACCESS FULL DATE_DIM D_YEAR IN (1993, 1994, 1995)

LOAD AS SELECT SYS_TEMP_0FD9FCA0A_7D1FC714

TABLE ACCESS FULL PART P_CONTAINER = 'JUMBO PACK'

SORT GROUP BY

HASH JOIN LO_PARTKEY = P_PARTKEY

TABLE ACCESS FULL SYS_TEMP_0FD9FCA0A_7D1FC714

HASH JOIN LO_ORDERDATE = D_DATEKEY

TABLE ACCESS FULL SYS_TEMP_0FD9FCA09_7D1FC714

HASH JOIN LO_SUPPKEY = S_SUPPKEY

TABLE ACCESS FULL SUPPLIER

Star Transformation
Things to Think About

• Assume it takes 5ms to do a random IO

• If we need 5 rows from the fact table and
they’re not in the buffer cache, how long
would it take to extract the rows we

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

TABLE ACCESS FULL SUPPLIER

VIEW VW_ST_F981A0CC

NESTED LOOPS

PARTITION RANGE SUBQUERY

BITMAP CONVERSION TO ROWIDS

BITMAP AND

BITMAP MERGE

BITMAP KEY ITERATION

BUFFER SORT

TABLE ACCESS FULL SYS_TEMP_0FD9FCA09_7D1FC714

BITMAP INDEX RANGE SCAN LO_DATE_B LO_ORDERDATE = D_DATEKEY

BITMAP MERGE

BITMAP KEY ITERATION

BUFFER SORT

TABLE ACCESS FULL SYS_TEMP_0FD9FCA0A_7D1FC714

BITMAP INDEX RANGE SCAN LO_PART_B LO_PARTKEY = P_PARTKEY

TABLE ACCESS BY USER ROWID LINEORDER

would it take to extract the rows we
want?

• What if we need to extract 1,000,000
rows?

Things to Think About
Star Transformation with Bitmap Indexes

High-cardinality
query ran in 3.9

minutes

The number of rows

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

Most of the time was
with random I/O

accessing fact table rows

The number of rows
required from fact

table after filtering is
important with index

access methods

Star Transformation Summary

Technique Primary Fact Table
Access Method Requirements Pros Cons

B*Tree Indexes
with NL Joins

• B*Tree index access
• Nested Loops joins

• Indexes on fact table Decent performance if number
of rows is very small and all
data accessed is satisfied from
memory

Algorithmically weak; can’t
get fact table rows fast
enough

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

Star
transformation

• Rowid from bitmap index
• Bitmap merge
• Star transformation

• star_transformation_enabled
• query_rewrite_integrity
• PK/FK constraints
• NOT NULL constraints
• Bitmap indexes on fact table

Excellent performance if
number of rows is small and all
data accessed is satisfied from
memory

Poor performance if
number of rows from fact
table is high and requires
random I/O

• Efficient way to filter data

• Bloom Filters created from
dimension tables and applied to
fact table during scan

• Utilizes swap join optimization and

Bloom Filters – before we get into the next part…

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

• Utilizes swap join optimization and
yields right-deep plans

• Filtered data is pipelined to hash
joins

Bloom Filter

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

0 0

Build
Bloom Filter

This example uses 3 hash functions

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

10

Build
Bloom Filter

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0

10 20

Build
Bloom Filter

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

0 0 0 0 0 1 0 1 0 0 1 0 0 1 0 1 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0

10 20 30

Build
Bloom Filter

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

0 0 0 0 0 1 0 1 0 0 1 0 1 1 0 1 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0

10 20 30 40

Bloom Filter passed Down
Bloom Filter

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

0 0 0 0 0 1 0 1 0 0 1 0 1 1 0 1 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0

Test
Bloom Filter

10 Probable Match

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

0 0 0 0 0 1 0 1 0 0 1 0 1 1 0 1 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0

10 20 30 40

Test
Bloom Filter

30 Probable Match

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

0 0 0 0 0 1 0 1 0 0 1 0 1 1 0 1 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0

10 20 30 40

Test
Bloom Filter

60Definite No Match

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

0 0 0 0 0 1 0 1 0 0 1 0 1 1 0 1 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0

10 20 30 40

Test
Bloom Filter

70Probable Match

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

0 0 0 0 0 1 0 1 0 0 1 0 1 1 0 1 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0

In this case, the match is in fact a false positive

10 20 30 40

Identifying in Plans
Bloom Filter

Bloom Filter create

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

Bloom Filter use

• Queries extract many rows from Fact
table

Choose Your Execution Method
Table Scans with Intelligent Filtering

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

• Database size large

Exadata or Oracle Database In-Memory

part

1. Build Bloom Filters and Hash Tables from Dimensions
Intelligent Full Scans

Operation Object Name Predicate information

SELECT STATEMENT

SORT GROUP BY

HASH JOIN LO_SUPPKEY = S_SUPPKEY

TABLE ACCESS STORAGE FULL SUPPLIER

HASH JOIN

JOIN FILTER CREATE :BF0001

PART JOIN FILTER CREATE :BF0000 LO_ORDERDATE = D_DATEKEY

TABLE ACCESS STORAGE FULL DATE_DIM D_YEAR IN (1993, 1994, 1995)

HASH JOIN

part customer

lineorder

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

date_dimJOIN FILTER CREATE :BF0002 LO_PARTKEY = P_PARTKEY

TABLE ACCESS STORAGE FULL PART P_CONTAINER = 'JUMBO PACK'

JOIN FILTER USE :BF0001

JOIN FILTER USE :BF0002

PARTITION RANGE JOIN-FILTER

TABLE ACCESS STORAGE FULL LINEORDER :BF0000

SELECT d_sellingseason, p_category, s_region,
sum(lo_extendedprice)
FROM lineorder

JOIN customer ON lo_custkey = c_custkey
JOIN date_dim ON lo_orderdate = d_datekey
JOIN part ON lo_partkey = p_partkey
JOIN supplier ON lo_suppkey = s_suppkey

WHERE d_year IN (1993, 1994, 1995)
AND p_container in ('JUMBO PACK')

GROUP BY d_sellingseason, p_category, s_region
ORDER BY d_sellingseason, p_category, s_region

date_dim supplier

Operation Object Name Predicate information

SELECT STATEMENT

SORT GROUP BY

HASH JOIN LO_SUPPKEY = S_SUPPKEY

TABLE ACCESS STORAGE FULL SUPPLIER

HASH JOIN

JOIN FILTER CREATE :BF0001

PART JOIN FILTER CREATE :BF0000 LO_ORDERDATE = D_DATEKEY

TABLE ACCESS STORAGE FULL DATE_DIM D_YEAR IN (1993, 1994, 1995)

HASH JOIN

part

2. Extract Rows from the Fact table
Intelligent Full Scans

customer

lineorde
r

1993

1994

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

JOIN FILTER CREATE :BF0002 LO_PARTKEY = P_PARTKEY

TABLE ACCESS STORAGE FULL PART P_CONTAINER = 'JUMBO PACK'

JOIN FILTER USE :BF0001

JOIN FILTER USE :BF0002

PARTITION RANGE JOIN-FILTER

TABLE ACCESS STORAGE FULL LINEORDER :BF0000

date_dim

SELECT d_sellingseason, p_category, s_region,
sum(lo_extendedprice)
FROM lineorder

JOIN customer ON lo_custkey = c_custkey
JOIN date_dim ON lo_orderdate = d_datekey
JOIN part ON lo_partkey = p_partkey
JOIN supplier ON lo_suppkey = s_suppkey

WHERE d_year IN (1993, 1994, 1995)
AND p_container in ('JUMBO PACK')

GROUP BY d_sellingseason, p_category, s_region
ORDER BY d_sellingseason, p_category, s_region

supplier
1994

1995

Operation Object Name Predicate information

SELECT STATEMENT

SORT GROUP BY

HASH JOIN LO_SUPPKEY = S_SUPPKEY

TABLE ACCESS STORAGE FULL SUPPLIER

HASH JOIN

JOIN FILTER CREATE :BF0001

PART JOIN FILTER CREATE :BF0000 LO_ORDERDATE = D_DATEKEY

TABLE ACCESS STORAGE FULL DATE_DIM D_YEAR IN (1993, 1994, 1995)

HASH JOIN

part

3. Join to Dimensions to Project additional columns
Intelligent Full Scans

customer

lineorder

part customer

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

JOIN FILTER CREATE :BF0002 LO_PARTKEY = P_PARTKEY

TABLE ACCESS STORAGE FULL PART P_CONTAINER = 'JUMBO PACK'

JOIN FILTER USE :BF0001

JOIN FILTER USE :BF0002

PARTITION RANGE JOIN-FILTER

TABLE ACCESS STORAGE FULL LINEORDER :BF0000

date_dim

SELECT d_sellingseason, p_category, s_region,
sum(lo_extendedprice)
FROM lineorder

JOIN customer ON lo_custkey = c_custkey
JOIN date_dim ON lo_orderdate = d_datekey
JOIN part ON lo_partkey = p_partkey
JOIN supplier ON lo_suppkey = s_suppkey

WHERE d_year IN (1993, 1994, 1995)
AND p_container in ('JUMBO PACK')

GROUP BY d_sellingseason, p_category, s_region
ORDER BY d_sellingseason, p_category, s_region

suppliersupplierdate_dim

Operation Object Name Predicate information

SELECT STATEMENT

SORT GROUP BY

HASH JOIN LO_SUPPKEY = S_SUPPKEY

TABLE ACCESS STORAGE FULL SUPPLIER

HASH JOIN

JOIN FILTER CREATE :BF0001

PART JOIN FILTER CREATE :BF0000 LO_ORDERDATE = D_DATEKEY

TABLE ACCESS STORAGE FULL DATE_DIM D_YEAR IN (1993, 1994, 1995)

HASH JOIN

part

4. Aggregate/Sort Rows and Return Results
Intelligent Full Scans

customer

lineorder

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

JOIN FILTER CREATE :BF0002 LO_PARTKEY = P_PARTKEY

TABLE ACCESS STORAGE FULL PART P_CONTAINER = 'JUMBO PACK'

JOIN FILTER USE :BF0001

JOIN FILTER USE :BF0002

PARTITION RANGE JOIN-FILTER

TABLE ACCESS STORAGE FULL LINEORDER :BF0000

date_dim

SELECT d_sellingseason, p_category, s_region,
sum(lo_extendedprice)
FROM lineorder

JOIN customer ON lo_custkey = c_custkey
JOIN date_dim ON lo_orderdate = d_datekey
JOIN part ON lo_partkey = p_partkey
JOIN supplier ON lo_suppkey = s_suppkey

WHERE d_year IN (1993, 1994, 1995)
AND p_container in ('JUMBO PACK')

GROUP BY d_sellingseason, p_category, s_region
ORDER BY d_sellingseason, p_category, s_region

supplier

Things to Think About
Intelligent Filtering

Query ran in 5
seconds

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

Same high-cardinality query
ran much faster with scans and
intelligent filtering on Exadata

compared to index access
methods

A Database In-Memory result
would be similar

What if we could
improve the

aggregation costs?

Full Scans with Intelligent Filtering Summary

Technique Primary Fact Table
Access Method Requirements Pros Cons

B*Tree Indexes with
NL Joins

• B*Tree index access
• Nested Loops joins

• Indexes on fact table Decent performance if number of
rows is very small and all data
accessed is satisfied from memory

Algorithmically weak; can’t get
fact table rows fast enough

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

Star transformation • Rowid from bitmap index
• Bitmap merge
• Star transformation

• star_transformation_enabled
• query_rewrite_integrity
• PK/FK constraints
• NOT NULL constraints
• Bitmap indexes on fact table

Excellent performance if number of
rows is small and all data accessed is
satisfied from memory

Poor performance if number of
rows from fact table is high and
requires random I/O

Full Scans with
Intelligent Filtering

• Full scans
• Swap join optimization & right-

deep tree
• Bloom Filters
• Pipelined hash joins

• Exadata or DBIM
• cell_offload_processing
• PK/FK constraints
• NOT NULL constraints

Can handle high and low cardinality
queries to achieve consistent
response times

Infrastructure cost, scalability as
concurrency increases

• Exploit Latest HW and SW technologies
Exadata and Database In-Memory

• Hundreds of GB/second

• Millions->Billions of Rows/second

• Specialist Execution plans and

Table Scans with Intelligent Filtering
Things We Do for Performance

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

• Specialist Execution plans and
algorithms, Swap join optimization and
right-deep trees

Exadata or Oracle Database In-Memory

Scans and Access

Bloom Filters pushed

Table Scans with Intelligent Filtering

Hardware: CPUs, disks,
flash, InfiniBand

Software: Smart Scan, HCC,
Storage Indexes

In-Memory columnar layout

SIMD vector processing

Filtering & Evaluation Bloom Filters pushed

How We Do It

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

Bloom Filters pushed
down to storage

Filtering & Evaluation Bloom Filters pushed
down to column store

Exadata Database In Memory

Swap Join Input Optimization
Left deep tree

HASH JOIN

HASH JOIN

DATEDIM 42

3

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

PART

HASH JOIN

LINEORDER

SUPPLIER

1 2

31

Swap Join Input Optimization
Becomes a right deep tree

HASH JOIN

HASH JOIN

DATEDIM 2

3

1
Why is this significant?

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

PART

HASH JOIN

LINEORDER

SUPPLIER2

3

1

4

• Queries extract many rows from Fact
table

• Database size large

Optimizations after the Joins
Vector Transformation (In-Memory Aggregation)

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

• Database size large

• Aggregation on low cardinality
dimensions

• Optimizer costs the transformation
Oracle Database In-Memory

• Goal is to do extra work up-front while
processing dimension tables to save time
downstream

• Scans and filtering takes place in the DBIM
column store

In-Memory Aggregation
Why Do It?

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

column store

• Aggregation is performed as part of the fact
table access

• Build a cube as we scan the fact table to
avoid potentially costly aggregation

Oracle Database In-Memory

Choose Your Execution Method
Vector Transformation

SELECT d_sellingseason, p_category, s_region,
sum(lo_extendedprice)
FROM lineorder

JOIN customer ON lo_custkey = c_custkey
JOIN date_dim ON lo_orderdate = d_datekey
JOIN part ON lo_partkey = p_partkey
JOIN supplier ON lo_suppkey = s_suppkey

WHERE d_year IN (1993, 1994, 1995)
AND p_container in ('JUMBO PACK')

GROUP BY d_sellingseason, p_category, s_region
ORDER BY d_sellingseason, p_category, s_region

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

ORDER BY d_sellingseason, p_category, s_region

SELECT key_vector(lo_orderdate), key_vector(lo_partkey), key_vector(lo_suppkey),
sum(lo_extendedprice)
FROM lineorder
WHERE key_vector(lo_orderdate) IN

(SELECT key_vector(d_datekey)
FROM date_dim
WHERE d_year IN (1993,1994,1995))

AND key_vector(lo_partkey) IN
(SELECT key_vector(p_partkey)

FROM part
WHERE p_container IN ('JUMBO PACK'))

GROUP BY key_vector(lo_orderdate), key_vector(lo_partkey), key_vector(lo_suppkeu)

In-Memory Aggregation Summary

Technique Primary Fact Table
Access Method Requirements Pros Cons

B*Tree Indexes with NL
Joins

• B*Tree index access
• Nested Loops joins

• Indexes on fact table Decent performance if number of rows is
very small and all data accessed is satisfied
from memory

Algorithmically weak; can’t get fact
table rows fast enough

Star transformation • Rowid from bitmap index
• Bitmap merge

• star_transformation_enabled
• query_rewrite_integrity

Excellent performance if number of rows is
small and all data accessed is satisfied from

Poor performance if number of rows
from fact table is high and requires

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

• Bitmap merge
• Star transformation

• query_rewrite_integrity
• PK/FK constraints
• NOT NULL constraints
• Bitmap indexes on fact table

small and all data accessed is satisfied from
memory

from fact table is high and requires
random I/O

Full Scans with Intelligent
Filtering

• Full scans
• Swap join optimization & right-deep

tree
• Bloom Filters and pipelined hash joins

• Exadata or DBIM
• cell_offload_processing
• PK/FK constraints
• NOT NULL constraints

Can handle high and low cardinality queries
to achieve consistent response times

Infrastructure cost, scalability as
concurrency increases

In-Memory Aggregation • Full scans
• Vector Transformation

• DBIM
• PK/FK constraints
• NOT NULL constraints

Excellent performance for both scan, filter,
and aggregation

Star Query Multi-User Demo

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

Star Query Multi-User Demo
Part I

Convergence of Techniques and Technology
Prescription

Optimizer
Environment

Database In-
Memory Parallel Execution In-Memory

Aggregation

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

Performance Acceleration

Performance Foundation

Partitioning

Statistics

Environment

Application
Algorithms

Data Types

Constraints

Schema
Design

Exadata

Bloom Filters

Clustering

Star
Transformation

Compression

The Prescription
Things You Must Do to Ensure Optimal Execution Plans

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

• Constraints

• Data Types

The Prescription
What you must do

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

• Statistics

• Partitioning

• NOT NULL Constraints on Join Keys

• Primary Key Constraints on Dimension
Join Keys

What You Must Do
Constraints

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

Join Keys

• Foreign Key Constraints on Fact Join Keys

• For each row in lineorder, how many
rows are returned from customer?

• Without constraints, what if lo_custkey
is NULLable?

• Even if lo_custkey is NOT NULL, how

What You Must Do
NOT NULL Constraints

FROM lineorder
JOIN customer ON

lo_custkey = c_custkey

SQL> desc lineorder
Name Null? Type
----------- ------- --------

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

• Even if lo_custkey is NOT NULL, how
many rows will join with customer? 0?
1? More than 1?

• NOT NULL constraints are essentially
free, no reason not to implement

• Several optimizations depend on this
information!

----------- ------- --------
...
LO_CUSTKEY NOT NULL NUMBER
...

SQL> desc customer
Name Null? Type
--------- --------- --------
C_CUSTKEY NOT NULL NUMBER
....

• There must be a primary key on the
dimension table

• There must be a foreign key on the fact
table

• The state of the constraint depends on trust

What You Must Do
Primary Key and Foreign Key Constraints

alter table customer
add constraint customer_pk

primary key (c_custkey)
RELY;

alter table lineorder
add constraint lo_customer_pk

foreign key (lo_custkey)

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

• The state of the constraint depends on trust
in the ETL process and volume of data

• Constraints must be in RELY state

• It is not necessary to enforce constraints on
the fact table

• You need to tell the optimizer you can trust
constraints in the RELY state With PK/FK constraints, exactly 1 row is

returned from dimension table for a fact
row

foreign key (lo_custkey)
references
customer (c_custkey)
RELY
DISABLE NOVALIDATE;

alter system
set query_rewrite_integrity=TRUSTED;

• How do we validate our data when our
constraints are not enforced?

• In other words, when constraints are in
RELY mode, how to we ensure we can

What You Must Do
Validating ETL/ELT

SELECT *
FROM lineorder
LEFT OUTER JOIN customer
ON lo_custkey = c_custkey

WHERE c_custkey IS NULL;

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

RELY mode, how to we ensure we can
rely on the quality of data being inserted
into our fact table?

• This SQL checks for rows in lineorder for
values of lo_custkey which do not exist
in the customer dimension table

WHERE c_custkey IS NULL;

SELECT *
FROM lineorder
LEFT OUTER JOIN customer
ON lo_custkey = c_custkey

LEFT OUTER JOIN date_dim
ON lo_orderdate = d_datekey

LEFT OUTER JOIN part

• We can also validate the rows in
lineorder against multiple dimensions

• Check the lineorder table for rows which
contain keys that do not exist in the

What You Must Do
Validating ETL/ELT

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

LEFT OUTER JOIN part
ON lo_partkey = p_partkey

LEFT OUTER JOIN supplier
ON lo_suppkey = s_suppkey

WHERE c_custkey IS NULL
OR d_datekey IS NULL
OR p_partkey IS NULL
OR s_suppkey IS NULL;

contain keys that do not exist in the
dimension tables

• Data types need to be the same on
Primary Key and Foreign Key columns

• Data type precision needs to be the
same on Primary Key and Foreign Key
columns

What You Must Do
Data Types

FROM lineorder
JOIN customer ON

lo_custkey = c_custkey

SQL> desc lineorder
Name Null? Type
----------- ------- --------
...

SQL> desc lineorder
Name Null? Type
----------- ------- --------
...

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

columns

• Avoid runtime data type conversion

...
LO_CUSTKEY NOT NULL NUMBER
...

SQL> desc customer
Name Null? Type
--------- --------- --------
C_CUSTKEY NOT NULL VARCHAR2(25)
....

...
LO_CUSTKEY NOT NULL NUMBER
...

SQL> desc customer
Name Null? Type
--------- --------- --------
C_CUSTKEY NOT NULL NUMBER(11)
....

Needs to be NUMBER

from T_TAB_WKO_04 a11
where (a11.DIMENSION02, a11.DIMENSION08) in (
select a12.BRAND_CODE, a12.STYLE_COLOR_CODE

from T_GASDM_LU_STYLE_COLOR a12)
and ((a11.MONTH = 12 and a11.YEAR = 2013)
and to_char(to_number(a11.dimension01)) in ('24'))

Ensure Optimizer Statistics are
Accurate and Representative

• Think about skew
• Think about correlation

What You Must Do

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

• Do not rely on Dynamic Statistics
alone

• Think about how and when to
gather statistics

Oracle Confidential – Internal/Restricted/Highly Restricted 68

• Typically RANGE or INTERVAL

• Reduces the number of rows extracted
from the fact table (i.e., early filtering)

What You Must Do
Partition the Fact Table on the Time Dimension

part customer

lineorder

1993

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

from the fact table (i.e., early filtering)

• Improves manageability

Applicable regardless of execution method

date_dim supplier

1993

1994

1995

What You Must Do
Partition the Fact Table on the Time Dimension

CREATE TABLE
LINEORDER
(
"LO_ORDERKEY" NUMBER NOT NULL ENABLE
,"LO_LINENUMBER" NUMBER
... other columns
)

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

Example: Interval partitioning

)
partition by range
(
LO_ORDERDATE
)
interval (numtoyminterval(1, 'MONTH'))
(
partition R199201 values less than
(to_date('19920201', 'YYYYMMDD'))

)
;

• Better cardinality estimates

• Better execution plans

• More access paths available

• Ability for the optimizer to perform

What Do You Gain by Following the Prescription?

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

• Ability for the optimizer to perform
many transformations and optimizations
(join elimination, materialized view
rewrites, In-Memory Aggregation
transformation, and many more)

• Partition pruning

Star Query Fundamentals

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

Star Query Fundamentals

Snowflake Schema
Edge Conditions

product customer product cust_mv

region

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

date

supplier

sales

cal_mv supplier

sales

month

year

Collapse your dimension tables
into materialized views

Relationships between Dimensions
Edge Conditions

product customerproduct customer

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

calendar supplier

sales

calendar supplier

sales

Examine data model, collapse
your dimension tables into

materialized views

Common Join Columns
Edge Conditions

product
customer

sales

product customer

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

calendar
supplier

sales

calendar supplier

sales
part

Examine data model, look to
see if there are missing

columns

Not “Completing” Joins
Edge Conditions

supplier
SELECT d.year, s.nation, c.nation,

SUM(l.extendedprice)
FROM lineorder l

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

calendar

customer

sales region

FROM lineorder l
JOIN calendar d ON l.lo_orderdate = d_datekey
JOIN supplier s ON l.lo_suppkey = s.suppkey
JOIN customer c ON l.lo_suppkey = c.custkey
JOIN region r ON s.region_id = r.region_id

WHERE d.year IN (1993, 1994, 1995)
AND r.region_code = ‘ASIA’
AND c.region_id = s.region_id

GROUP BY d.year, s.nation, c.nation,
ORDER BY d.year, s.nation, c.nation;

Snowflake schema with
queries providing filter

predicates once for both
dimension joins and not

completing joins

“Completing” Joins
Edge Conditions

supplier region
SELECT d.year, s.nation, c.nation,

SUM(l.extendedprice)
FROM lineorder l

JOIN calendar d ON l.lo_orderdate = d_datekey
JOIN supplier s ON l.lo_suppkey = s.suppkey
JOIN customer c ON l.lo_suppkey = c.custkey

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

calendar

customer

sales
JOIN customer c ON l.lo_suppkey = c.custkey
JOIN region r1 ON s.region_id = r1.region_id
JOIN region r2 ON c.region_id = r2.region_id

WHERE d.year IN (1993, 1994, 1995)
AND r1.region_code = ‘ASIA’
AND r2.region_code = ‘ASIA’

GROUP BY d.year, s.nation, c.nation,
ORDER BY d.year, s.nation, c.nation;

Join each dimension to outer
table in snowflake schema

region

Recent Results 1000X Project

Baseline: 4.3 Hours Baseline: 2.4 Days Baseline: 2.5 Hours

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

Baseline: 4.3 Hours

Code Changes: 4.3 Hours

Correct Usage: 29 Secs

Bug Fixes: 12 Secs

Final: 12 Secs

Speed up: 1355.57

Baseline: 2.4 Days

Code Changes: 27 Mins

Correct Usage: 7.5 Mins

Bug Fixes: 4.5 Mins

Final: 4.5 Mins

Speed up: 768

Baseline: 2.5 Hours

Code Changes: 2.5 Hours

Correct Usage: 4 Secs

Bug Fixes: 0.90 Secs

Final: 0.90 Secs

Speed up: 9000

